
• In real-world implementations
• For agile, risk-driven testing
• Internationalization of software applications
• Localization testing

Manfred Rätzmann
Clinton De Young

Galileo Computing

Software Testing
and Internationalization

http://www.lisa.org/
http://www.lemoine-international.com

About Lemoine International
Established in 1997, Lemoine International is an IT services company

which provides multilingual translation and software localization services.

In addition, it also provides professional project management, UI, I18N,

functionality testing, and internationalization consulting services. With its

headquarters in Salt Lake City, Lemoine International has production cen-

ters throughout Europe and Asia. In its international software testing facility

in Ireland the company carries out multilingual and cross-platform testing

for numerous well-known IT companies.

For more information, please visit www.lemoine-international.com.

About LISA
Founded in 1990 as a non-profi t association, LISA is the premier organi-

zation for the GILT (Globalization, Internationalization, Localization, and

Translation) business communities. Over 400 leading IT manufacturers

and solutions providers, along with industry professionals and an increas-

ing number of vertical market corporations with an internationally focused

strategy, have helped establish LISA best practice, business guidelines, and

language-technology standards for enterprise globalization.

For more information on LISA, please visit www.lisa.org.

This PDF version of Galileo Computing Software Testing and International-
ization is provided free of charge by Lemoine International and LISA. It is a

full version of the book and there are no limits on your use of the PDF, but

it may not be printed.

If you are interested in obtaining a hard copy of the book, please e-mail

TeriR@lemoine-international.com.

Galileo Computing Software Testing and Internationalization
© 2003 Lemoine International and the Localization Industry Standards

Association (LISA)

http://www.lemoine-international.com
http://www.lisa.org/
mailto:TeriR@lemoine-international.com

Manfred Rätzmann
Clinton De Young

Software Testing
and Internationalization

�������� � � � � � 	 � � � � 	 �

Chapters 1 through 5 initially published in German as

Software-Testing

ISBN 3-89842-271-2

© Galileo Press GmbH, Bonn 2002

English Edition published by Lemoine International, Inc.

Salt Lake City 2003

Established in 1997, Lemoine International

is an IT services company which provides

multilingual translation and software

localization services. In addition, it also

provides professional project management,

UI, I18N, functionality testing, and

internationalization consulting services.

With its headquarters in Salt Lake City,

Lemoine International has production centers

throughout Europe and Asia. In its

international software testing facility in Ireland

the company carries out multilingual and

cross-platform testing for numerous well-

known IT companies.

For more information, visit

www.lemoine-international.com

Chapters 1 to 5 written by Manfred Rätzmann

Chapter 6 written by Clinton De Young

Translation from the German of chapters 1 to 5

Matthew Harris for Lemoine International Inc.,

Salt Lake City Cover photo Photonica Cover

design Barbara Thoben, Cologne Typesetting

Lemoine International Inc. Printing and

binding Bercker Graphischer Betrieb, Kevelaer

All parts of this book are protected by

copyright. All rights reserved, in particular the

right to translate, present, reproduce whether

by photomechanical or other means or to

store on electronic media.

Regardless of the care given to creating the

text, illustrations and programs used, neither

the publisher nor the author, editor or

translator can be held in any way legally liable

for possible errors or their consequences.

Names of objects, trademarks, product

descriptions etc. can be trademarks without

being marked in any way and as such are

subject to applicable law.

Contents 3

Contents

An Extremely Subjective Foreword 9

A Global Foreword 11

1 Rapid Application Testing 13

1.1 Everything Is in Flux 13
1.1.1 Software Development as a Game 13
1.1.2 The Art of Getting a Program to Crash 14
1.1.3 Error Weighting 15

1.2 The Rapid in Rapid Application Testing 16
1.2.1 Integrated Testing 17
1.2.2 All Good Things Take Time 18

1.3 Testers and Developers 19
1.3.1 The Way Things Stand 19
1.3.2 Theory and Practice 20
1.3.3 Self-Awareness 21
1.3.4 And the Winner Is ... 23

1.4 Ideas, Techniques and Tools 23

2 Testing: an Overview 25

2.1 What is Software Quality? 25
2.1.1 Possible Definitions 25
2.1.2 New Approaches to Quality 28

2.2 The Overall Course of a Test 29
2.2.1 Planning 30
2.2.2 Execution 32
2.2.3 Evaluation 33

2.3 What is to be done with the test results? 35
2.3.1 Checking 36
2.3.2 List of known errors 38

2.4 Testing Strategies 38
2.4.1 Exploratory Testing 38
2.4.2 Testing and Improving (Testing and Tuning) 39
2.4.3 Automated Testing 40
2.4.4 Testing by Using 43
2.4.5 Testing by Documenting 45
2.4.6 Regression Testing 45
2.4.7 Smoke Tests 46
2.4.8 Embedded Testing 47
2.4.9 Live Testing 48

4 Contents

2.5 Testing Methods 49
2.5.1 Black Box Testing 49
2.5.2 White Box Testing 50
2.5.3 Gray Box tests 50

2.6 Types of Functional and Structural Tests 51
2.6.1 Requirements-Based Testing 51
2.6.2 Design-Based Testing 53
2.6.3 Code-Based Testing 53
2.6.4 Performance Testing 54
2.6.5 Stress Testing 54
2.6.6 Robustness Testing 54
2.6.7 Long-term Testing 55
2.6.8 Installation Testing 55
2.6.9 Security Testing 55

2.7 Testing Types with Various Input Data 56
2.7.1 Random Data Testing 56
2.7.2 Spot Check Testing 56
2.7.3 Boundary Value Testing 57

2.8 Phases of Testing 58
2.8.1 The Classic Test Planning Model 59
2.8.2 Integration of Phases in Rapid Application Testing 64

2.9 Other Quality Assurance Methods 68
2.9.1 Design and Code Reviews 68
2.9.2 Static Code Analysis 69
2.9.3 Model Validation 70

3 Testing in the Real World 71

3.1 Developing and Testing 71
3.1.1 A case study 71

3.2 Risk assessment 84
3.2.1 Setting Priorities 84
3.2.2 Various Risk Types 85
3.2.3 Risk Assessment Based on User Priorities 87
3.2.4 Function/risk matrix 90

3.3 Testing Patterns, Patterns for Debugging 92
3.3.1 Best, Minimal, Maximal and Error Case 92
3.3.2 Equivalence classes 94
3.3.3 Boundary Values 95
3.3.4 Cause and Effect Diagrams, Decision Trees 96

3.4 Unit testing 97
3.4.1 Functional testing 98
3.4.2 Structure testing 104

Contents 5

3.5 Integration Testing 108
3.5.1 Transactions 108
3.5.2 Linking to the Interface 111
3.5.3 Synchronization 111

3.6 System Testing 113
3.6.1 Functional completeness 113
3.6.2 Run-time Behavior 115
3.6.3 Installation 117
3.6.4 Capacity Limitations 119
3.6.5 System problems 120
3.6.6 System Security 121

3.7 Performance Testing 123
3.7.1 System Parameters 123
3.7.2 The Quadratic Effect 125
3.7.3 Stress Testing for Middleware 127
3.7.4 Database Access 129

3.8 Test Coverage 130
3.8.1 Classic Coverage Indices 130
3.8.2 What Information Do Code Coverage Indices Contain? 132
3.8.3 Function Coverage 134
3.8.4 Generating Test Cases on the Basis of Use Cases 135
3.8.5 Test Coverage and Object-Oriented Languages 138
3.8.6 Coverage of System Scenarios 141

4 Methodologies and Tools 147

4.1 Debugging—Another Use Case 147
4.1.1 The Test Case 148
4.1.2 Detecting Bugs 149
4.1.3 Error Accumulation 151
4.1.4 Isolating Bugs 152
4.1.5 Creating Bug Reports 154
4.1.6 Bug fixing 155
4.1.7 Verification 157
4.1.8 Regression Testing 157

4.2 Automating Testing Procedures 158
4.2.1 Integration and Systems Testing 159
4.2.2 Scripting under Windows 162
4.2.3 Unit Test Frameworks 179
4.2.4 Application Interface Testing 189

4.3 Test-driven Application Development 191
4.3.1 Separation of Interface and Implementation 193
4.3.2 Handling Printouts 195
4.3.3 Interface-centric design 196
4.3.4 Design by Contract 197

6 Contents

4.3.5 Test Code 204
4.3.6 Code Instrumentation 205
4.3.7 Audit Trail 206

4.4 Tools 207
4.4.1 File comparison tools, Diff, XML Diff 207
4.4.2 Data Access and Evaluation 208
4.4.3 COM Interactive 210
4.4.4 Code Coverage, Logging, Tracing and Profiling 211
4.4.5 Design by Contract 212
4.4.6 Load and Performance Tests 213
4.4.7 GUI Test Automation 214
4.4.8 Testing Distributed Systems 216

5 Agile Quality Management 217

5.1 Keep It Flexible 217
5.1.1 Individuals and Interactions 218
5.1.2 Working Software 219
5.1.3 Collaboration with the Customer 220
5.1.4 Reaction to Changes 223

5.2 Estimates of Effort 224
5.2.1 Evaluating One’s Own Projects 225
5.2.2 Software Risk Classes 226

5.3 The Test Machine 227
5.3.1 Cloning Hard Drives 227
5.3.2 Virtual Machines 227

5.4 Administering Test Data 228

5.5 Quality Metrics 229
5.5.1 Errors per Area 229
5.5.2 Errors According to Error Type 230
5.5.3 Errors per Unit of Time 230

5.6 Quality Control 231
5.6.1 Bug Tracking Database 231
5.6.2 Bug Reporting 233
5.6.3 Test Case Tracking 233
5.6.4 Test Scripts 236

5.7 Criteria for Concluding Testing 236

6 Internationalization and Localization Testing 239

6.1 Localization and Internationalization 239

6.2 International Planning and Architecture 241
6.2.1 Lack of International Focus in Project Plans 242
6.2.2 Why Native Language Centric Plans are an Issue in Development 243
6.2.3 Why Native Language Centric Plans are an Issue in Testing 244
6.2.4 What the Plan Should Look Like 245

Contents 7

6.3 International Development Issues 247
6.3.1 Problems Working With Strings 247
6.3.2 Problems Working With Dialogs – String Expansion 257
6.3.3 Builds and Installers 261
6.3.4 Achieving Success through Proper Planning and Architecting 267

6.4 Internationalization Testing 271
6.4.1 Start Testing from Day One 271
6.4.2 Testing Your Program’s Installation 273
6.4.3 Testing for Localizable Strings 274
6.4.4 Testing With Foreign Characters 276
6.4.5 Double-Byte Overlapping Characters 280
6.4.6 Keyboards 283
6.4.7 Printing and Paper Sizes 284
6.4.8 Sorting 284
6.4.9 Filtering and Searching functionality 290
6.4.10 Shortcut Keys and Mnemonics 290
6.4.11 Date and Time 292
6.4.12 Currency 294
6.4.13 Numbers 295
6.4.14 Addresses, Postal Codes and Phone Numbers 295
6.4.15 Spelling, Grammar and Other Language Considerations 296
6.4.16 Brand Names and Terminology 298
6.4.17 Asian Text in Programs 299
6.4.18 Databases 300
6.4.19 Seasons 301
6.4.20 Measurements 302
6.4.21 Signs, Symbols and Colors 302

6.5 Conclusion 304

Bibliography 307

Index 315

An Extremely Subjective Foreword 9

An Extremely Subjective Foreword

by Manfred Rätzmann

When I began to take a more intense interest in software testing a

number of years ago, the first thing I felt was a great deal of uncertainty.

On the one hand, I had always tested my own programs carefully or done

“test drives” and had never been faced with a quality disaster. I had to

admit that there were always a few bugs after completion ... Sure, a

whole string of unique situations hadn’t really been covered ... But by and

large the software programs worked pretty well. On the other hand, fairly

soon I had this creepy feeling that the approach I was taking when testing

software did not have all that much in common with what was described

or expected of testers in books published on the subject. I partly

attributed that to the difference in scope of the projects described in the

books or to the academic background of the authors, but my journeyman

effort wasn’t insignificant at the time either – around 20 programmers

had worked on developing the software. I went through three phases.

First I would say to myself “I’ve got to radically change how I’m doing

things.” Then, “Now I see how it works, but I won’t do it myself yet.” Until

finally, I was saying “That’s out of the questions – that won’t ever work!”

My daily grind had a hold of me again.

What I’ve learned in the meantime is to trust my experience and

judgment. What you do and don’t do in software development, what

priorities you set and what order you do things in – all these things

emerge based on experience gathered in projects over time; your own

ideas and those of others, discussions, reading material, trying and failing

– in short, by constantly dealing with the issue. This almost inevitably

leads to the emergence of certain preferences. I have a lot more fun

finding out what causes a software bug than I do retesting functions after

each change in code. That’s why I immediately try to automate tasks like

that. After all, I’m a software developer, and software developers always

want to automate anything which is a pain!

1 0 An Extremely Subjective Foreword

I think software testers and developers are becoming more and more

similar – developers test and testers develop. The idea that testing

automation is the same as software development (a highly fascinating

concept), will be making the rounds in the years to come. Quality

assurance will become more tightly integrated within the software

development process, causing testers and developers to draw even closer

together. The qualification required for both specialists is the same; their

points of view, however, are different. That is where I’ll go out on a limb,

we’ll get to that a little later on.

I wrote this book by myself, but I’m not the only one living on this planet.

There are always people on the sidelines who are also affected when one

takes on a project of this type. I would like to express my thanks to these

people for the support and tolerance they have shown over the past six

months. Thank you, Moni, for making it possible for me to drop out of

sight. Thanks, Wolfgang, for carrying on a dialogue with me over the years

on software development (and reining me back in at times). Thanks, Jan,

for your unstinting proofing and many helpful comments. Thanks, Alf, for

providing the impetus which led to writing this book. Thank you, Judith,

for the trust your have placed in me and your commitment to this book.

I want to express my gratitude to all the people who have helped me.

Thanks for being there!

A Global Foreword 1 1

A Global Foreword

by Clinton De Young

In the early 90’s, during a trip to Japan, I received my first non-English

versions of DOS, Windows, and a handful of software titles. I was excited

to have Japanese versions of these programs until I installed them and

was met with missing features, poor translations, and an underwhelming

level of quality. Soon after this disappointing experience, I began

working with contacts in Japan and the US in an effort to improve the

quality of Japanese translations in software and documentation.

After working on several translations I still wasn’t satisfied with the

functionality of the software I was translating. Too often features were

left out of the Japanese versions of software, and the quality was

somewhat diminished. My interests evolved from translations to

internationalization and localization testing, and then finally into

internationalization engineering.

During the years, I have worked on many projects and seen many

successes, and even a few failures. My desire in this book is to share

some of my experiences and to discuss aspects of testing global software

that will help you successfully ship quality products to all of your

international customers.

The tools available to developers for creating international products have

improved, as has the overall quality of localized software during the last

10 years; however, there are still areas that need work. Hopefully, once

you have completed this book, you will be able to improve the quality of

the software you work on, and help others do the same.

I have enjoyed the internationalization and localization aspects of

development and testing over the years. It has provided me with a

unique opportunity to get to know people from all over the world, and

make friends I never would have otherwise. I have been able to travel to

many countries and experience many different cultures. It is a path in my

life that I am very glad I traveled. I hope you have an equally enjoyable

experience as you work with global software.

1 2 A Global Foreword

There have been many who have helped make my experiences in

international software good ones, and people who have taught me along

the way. To show my gratitude, I would like to acknowledge their

contributions here. I would like to thank my wife Hiromi and my children

for their support in all I do. I would like to thank my friend David Stones

for taking a chance on me when I lacked experience so many years ago.

Thanks to Guenter and Teri at Lemoine International for making my

contributions to this book possible. I also offer my thanks to my dear

departed friend Craig Adams (to whom I still owe a lunch) for his

mentoring and unparalleled friendship. Finally, I would like to thank my

parents for the life I have to live.

Rapid Application Testing 1 3

1 Rapid Application Testing

“There is something fishy about this!” shouted the hare:

“Let’s do it again—turn around and go back!” And he rushed

off like the wind, his ears flying behind his head. As he

approached the top of the field again, the hedgehog called

over to him: “Beat ya!”

(Adapted from [Schröder1840], “The Hare and the

Hedgehog”)

1.1 Everything Is in Flux

Times change. Particularly in the software development world, everything

is always changing. Not only are customer requirements undergoing

constant transformation, but so are the limits of technology, software

user interfaces, and the ways humans and computers interact. This has an

effect on how software is built. Since the environment is constantly

changing, software that constitutes an obstacle to change should not be

built. In the age of the Internet, every type of bureaucratic overhead

related to software development is being questioned.

Testing on
internet time

Software testing is not immune to all these changes. For a long time, the

basis for generating test plans and metrics was coverage of functional

properties and coverage of specifications (see the section “Test Coverage”

on page 130.) After it was realized that not everything can be tested,

methods were developed to uncover redundancies within test cases and

test data. In addition, methods were also developed for evaluating the

risks of testing certain parts of the software less intensively than others.

However, because all this still did not keep pace with the increasing speed

of software development, people began to question more and more the

aspects of their own methodology.

1.1.1 Software Development as a Game

Ever since the overwhelming victory of the object-oriented paradigm in

software development, few other issues have excited more controversy

than changes in software development methodology.

1 4 Everything Is in Flux

Ten years ago, the prevalent view was that Computer Aided Software

Engineering, or CASE, was the answer to every problem (perhaps

primarily because of the expensive tools involved). People like Alistair

Cockburn [Cockburn, 2002] now describe software development as a

cooperative game, bounded by its specific content, which moves toward

a specific endpoint over a given period of time. The cooperative group is

made up of project sponsors, managers, specialists, technicians,

designers, programmers, testers, and in short, everyone who has an

interest in the success of the project. In most cases, the endpoint of the

game is to deliver the required system as quickly as possible. Sometimes

the focus is placed on other software endpoints: easy to use, bug-free, or

safe from possible third-party liability claims.

Agile processes This view of the activities involved in the software development process,

as elaborated and justified by Cockburn, dovetails perfectly with the

current debate on software development methodologies. Agile processes

are in demand: processes which can adapt quickly to changes and rely

more on communication, self-organization and the delivery of real-world

software than on the planning, monitoring and documentation of the

development process [Fowler and Highsmith, 2001].

1.1.2 The Art of Getting a Program to Crash

The game between the software tester and software developer is

reminiscent of the race between the tortoise and the hare.

The games
testers play

The rules of the game are simple: The testers try to find the most

important errors as quickly as possible. In other words, they try to prove

that the program will fail under certain conditions. The most obvious

indication of failure is the common crash: a general protection fault or the

program freezing ("Nothing is happening"). In this sense, rapid

application testing can certainly be described as the art of getting a

program to crash.

The games
programmers play

Programmers do everything they can to deny the testers the thrill of

victory. The developers win if they can say, every time the testers run into

a critical performance issue with a program, "Beat ya!" —like the tortoise.

This does not mean that a program must perform faultlessly in every

imaginable situation. However, the program must respond in a

Rapid Application Testing 1 5

predictable and stable manner—for example by generating an error

message and instructions for how to resolve the error—no matter what

nasty tricks the tester employs.

1.1.3 Error Weighting

Program failures do not always reveal themselves as blatantly as with a

crash. More subtle failures range from processing or output errors to

computing errors and usability flaws, all the way to inadequate care in the

treatment of confidential data. Because not all errors are equally

important, a rank order for error weighting should be set up based on the

agreed-upon rules of the game. The following is a proposed four-level

scale for generic error weighting developed with software end users in

mind. Using this scale, errors are ranked by their importance within four

groups:

1. Errors that render the program inoperable

2. Errors that make it impossible to use the program as planned unless

workarounds are used

3. Errors that cause annoying and unnecessary effort while using the

program

4. Errors adversely affecting the software's user interface.

In this context, use refers to the user's entire experience with the

program, and therefore also includes installation and administration.

The most serious errors on this scale are those which prevent users and

administrators of the program from working and cannot be worked

around. Anything that forces the user or administrator to resort to a

workaround to accomplish a given task is ranked second. The next level

down is anything which is annoying and inconvenient. Inconsistencies in

the look and feel of the software are placed in the final category.

The scale assumes that the prescribed use of the program has been

defined somewhere, for example in use cases, functionality specifications

or in menu item descriptions. The mere desire for a particular use

(“I should also be able to do this...”) is not sufficient grounds for reporting

an error.

1 6 The Rapid in Rapid Application Testing

Adhering to
project goals

In the end, rules for ranking errors by importance will be determined by

the project goals and the project stakeholders. For example, market

competition may make a software product’s graphical user interface

vitally important. In this case, factors such as whether the product

appeals to younger or older users, whether it is "hip" or corporate, or

whether it comes across as conversational or professional make

inconsistencies in the GUI more important than missing functionality.

1.2 The Rapid in Rapid Application Testing

The objective of Rapid Application Testing is to find the most serious

defects in a software product as quickly as possible. That is why the

approach is called Rapid Application Testing rather than Total Application

Testing. Finding all the errors can also be an intriguing game—but the

question almost always arises of who will pay for it.

On the Web site of his software testing company Satisfice [Satisfice],

James Bach, author of several books on software testing, distinguishes

between his approach, which he calls “rapid testing,” and standard

testing methodologies. He lists the following ways in which Rapid Testing

differs from the formal testing methods traditionally used:

� Mission

Rapid testing does not begin with a task like “create test cases.” Instead,

it begins with a mission such as: “Find the most important errors—fast.”

Which tasks are necessary to complete the mission successfully? That

depends on the nature of the mission. No activity considered necessary

under the formal testing approach is indispensable; all activities must

prove their utility in relation to the mission.

� Capabilities

The conventional testing approach underestimates the significance of

the tester's ability, knowledge and skills. Rapid Testing requires

knowledge of the application being tested and the potential problems

which may arise during deployment, as well as the ability to draw

logical conclusions and devise tests that produce meaningful results.

� Risk

The traditional testing approach attempts to cover as many functional

properties and structural components as possible. Rapid Testing

Rapid Application Testing 1 7

focuses on the most important problems first. To do this, testers

develop an understanding of what can happen and what results when

it does happen. Afterwards, potential problem areas are explored in

order of their importance.

� Experience

In order to avoid descending into “analysis paralysis,” Rapid Testing

recommends that testers rely on past experience. In conventional,

formal testing methods, tester experience usually enters into the work

unconsciously and is therefore unexamined. Testers using Rapid

Testing, however, should collect and record their experiences and

validate them through systematic application.

� Research

“Rapid Testing is also rapid learning,” says James Bach [Bach, 2001]. The

application under test (AUT) is investigated and defined during testing.

The next test always derives from the results of the preceding tests.

Exploratory testing goes straight to the core problems of the software

more quickly than scripted testing.

� Collaboration

Testing can often become a lonely undertaking if you follow

conventional methods. One important technique used in Rapid Testing

is pair testing—i.e. two testers on one computer. This technique was

adopted from eXtreme Programming and, according to James Bach,

also works very well in Rapid Testing.

Above all, Rapid Testing is exploratory testing (see the section “Testing

Strategies” on page 38). For professional testers who must test programs

"cold," exploratory testing is often the only way to get control of a

demanding work project. The general procedures for testing functionality

and stability that back up the “Certified for Microsoft Windows" logo

were developed by Bach based on the exploratory testing approach

[Microsoft, 1999].

1.2.1 Integrated Testing

James Bach describes Rapid Testing from the viewpoint of a professional

tester. I have inserted the word “application” and produced the term

Rapid Application Testing (RAT) in order to emphasize its similarity to

18 The Rapid in Rapid Application Testing

Rapid Application Development (RAD). Both are concerned with the

entire development process—RAT does not exclusively focus on testing,

and RAD does not exclusively focus on the user interface, as some

descriptions imply. Both efforts have the same goal—not to waste time.

Rapid Application Testing is integrated testing. In other words, it is

integral to the software development process and not a secondary,

ancillary software validation process. Just as tasting is an integral part of

cooking, testing is always part and parcel of the software development

process that leads to a product or an intermediate engineering product.

Rapid Application Testing provides various strategies and techniques for

doing this. Important strategies include “testing by using” and embedded

testing. For more information on this area, see Chapter 2, “Testing: An

Overview,” and its section on testing strategies. All strategies and

techniques have one thing in common: they focus on the risk that each

(intermediate) product may pose to the success of the entire software

development process.

1.2.2 All Good Things Take Time

Did Rapid Application Testing get its name because software errors and

behaviors that are only annoying, superfluous or unpleasant are not

found and corrected? Or because bugs will remain inside programs

forever merely because some are not that critical? Or because nobody is

willing to deal with spelling errors in screen forms?

This is not what the term means. Rapid Application Testing simply

indicates what testers should pay attention to first. It does not imply that

the effort to enhance quality should fall by the wayside after testers have

found all the bugs in the “Crash” and “Workaround Required” categories.

The most important principles of Rapid Application Testing, such as goal

orientation and trust in the creativity, ability and experience of those

involved—rather than rigid reliance on formal procedures—are fully

applicable to tracking down bugs that are only a nuisance. It is precisely

this type of interference with workflow, caused by inconsistencies in the

program’s look and feel, user interface design flaws, or poorly designed

input dialogs, that will almost never be found using prescribed test cases.

Rapid Application Testing 1 9

One should not of course be overly optimistic and assume that such goals

can be achieved as rapidly as the most serious software errors are

discovered. Some things take time. That includes, among other things,

allowing software to become "fat" and “sleek" in development.

Rapid Application Testing must mean getting the software ready for

market. That not all software introduced to the market is “robust” or

"sleek" or even "mature"—and that it neither can nor must be—is

something I probably do not need to tell you.

1.3 Testers and Developers

1.3.1 The Way Things Stand

Why is knowledge of testing strategies, techniques and basics so

important for developers, software architects, analysts and designers, i.e.

for everyone involved in the software development process? Isn’t it

enough if the testers know their way around testing? The answer is as

simple as it is compelling: Because many projects do not include a tester.

If those involved in a project still want to deliver high-quality software,

then they will have to test it themselves.

Everyone testsCurrently, “tester” is predominantly viewed as a role that anyone can fill

when called upon to do so. After completion of development tasks or at

convenient points in a project, a software developer may slip into the role

of tester and give the application a "once over." In most projects someone

has designed the software and makes the final decision on changes and

extensions. This someone typically watches with eagle eyes to make sure

that the original design is preserved and that "his" or "her" program does

what he or she intended it to do. Sometimes the project manager does

not want to put his or her name on the line for the next release version

without testing the program first. All of these persons had better get a

grasp of the topic quickly. Formal specifications of test activities, which

are reasonable enough for well-funded projects with relaxed schedules,

are more of a hindrance under these circumstances.

Rapid does not
mean ad hoc

The gap between formal requirements and real world practice (but not

only in testing) has been around for a long time, probably since software

has been around and since people recognized the need for testing.

2 0 Testers and Developers

“Ad hoc” testing is standard practice on underfunded projects where the

focus is necessarily on the most important features due to budget or time

constraints. This type of improvised testing often makes everyone on the

project queasy. So much hasn't been tested—but really—shouldn’t

everything be tested?! This uncertainty arises when people do not realize

that they are participating in a “software development” game—a.k.a. a

mission—and thus do not understand the object of that game. Their own

role in the game and the duties attached to that role also remain unclear.

Testing is not viewed as a means of minimizing risk; instead it is seen as an

imposition. The rationale for and scope of testing remain vague. One has

a vague sense that expectations will never be met. This produces

uncertainty about what should be tested first. Those involved try to

master their insecurity by going back to the book—taking formal

methods straight out of textbooks. However, there is not even enough

time to properly develop the documents specified by the “IEEE Standard

for Software Test Documentation” [IEEE829]: test plan, test design, test

case specification, test procedures, test item transmittal report, test log, test

incident report and test summary report. The testers (if there is a budget for

them at all) test “something, anything.” The developers get annoyed

because the testers report more or less marginal problems (“I’m glad the

test is working and then he starts bugging me with stuff like that!”). In

the end, the team trusts in the Almighty and delivers the application.

1.3.2 Theory and Practice

In their standard work Testing Computer Software [Kaner, 1999], Cem

Kaner et al. compare software testing with the experimental testing of

scientific theories. On development teams, testers are the practitioners.

They set up test procedures with which to confirm their paradigm of the

program. Or they intend to prove that the program fails under certain

conditions. Testers are skeptics. They see the program from a user

perspective and ferret out the practical uses of the programmers’

theories.

In this analogy, the developers are the theorists. They conceptualize and

envision only with great difficulty where their ideal world might clash

with harsh reality. Developers like to believe that the whole world works

Rapid Application Testing 2 1

the way they imagine it working. They view programs—and software

bugs—as interesting assignments and intriguing challenges. Usability is

less important to them unless they have to use their application

themselves.1

This characterization may seem a little extreme, but it gets to the heart of

the issue. Anyone who has done both jobs—developing software and

testing unknown software—knows that as a tester or developer, you can

easily get to feeling what Kaner describes.

If one sticks to the principle that software developers and testers must be

different people, this will usually not help much with real-world software

development projects. In many projects, the developers are the only ones

who try out the program before it is released. This can hardly be called

testing; it would be more accurate to describe it as confirming the validity

of their theories (see above).

To ignore this situation and the factors behind it, and to insist on a formal

division between testing and development, is no solution. For many

projects which privilege direct contact with the customer and flexible

response to customer change requests and bug reports, a formalistic

approach of this kind would be fatal. It is better to accept the situation as

it is and provide project members with the techniques and tools they

need: not only take control of the situation, but also to extend their

competitive advantage by producing high quality products.

1.3.3 Self-Awareness

How do you feel?How do people feel when somebody finds an error in their program?

Especially if the program is your own work or built by your team—and

the release date is bearing down on you? There are many different

reactions to this kind of pressure. Some people knew all along (they say)

that the developers for this particular module couldn't cut it—they didn't

even think to check such an obvious feature (“This would never happen

to me, because ...”). Others would rather look the other way because

they know that the error—there for all to see in its gory detail—will only

lead to another project delay (“We’re behind schedule already as it is!”).

1 If a developer creates programs for his or her own use, then ease-of-use is usually
their weak point.

2 2 Testers and Developers

Yet another group will simply think it is a pain to consider a minor issue

like that an error, because they know that they will have to test the

revised code after the bug has been fixed.

Mission possible Sure—you can’t help having these feelings. Maybe such feelings should

not be stated so clearly to avoid demoralizing others in the group. But a

tester of a product or program component could also clarify for himself or

herself, in one or two sentences, his or her own role, the object of the

game, and the mission. It is worth a try.

Certain tests are designed to find errors. Other tests are intended to show

that certain requirements have been met by the program. The following

applies in both cases: the sooner the better. The sooner an error is found,

the sooner it can be eliminated. The sooner you discover something is

missing, the sooner you can add what is needed. Ignoring the issue or

procrastinating does not help in either case.

When I discover an error, I have done a good deed for the project. If the

error is grievous, I have really done well. I say this because a project will

stand or fall based on early detection of show stoppers.

Two pairs of eyes
are better than

one

A developer who tests his or her own program is in a certain way

handicapped. Subconscious fears may keep the developer from carefully

checking certain parts of the program. Some burned-out programmers

will stare at their own source code for several minutes without seeing the

error that is hidden there. More often than not, unexamined convictions

will also blind a programmer to possible sources of errors.

Things look different if software developers review their colleagues’

programs, for example during pair programming, or serve as an auditor

during peer or group reviews, or take on the role of the end user. If asked

to use an unknown module, even normal developers will respond with

the “let's just have a look” reflex. The module's GUI is experienced as

what it is: an interface. The developer will distrust it instinctively, check

the claims made in the interface description (if it exists) for accuracy, and

so on.

Rapid Application Testing 2 3

1.3.4 And the Winner Is ...

Testers and developers must realize that they both have a role in a game.

Many feel very uncomfortable taking on the apparently aggressive or

destructive role of the tester, especially if the roles of developer and

tester are combined in one person or group.

However, one can make a virtue of this necessity if both roles in the game

are seriously acted out, if the objective of the game is known, and if the

rules of the game are followed. The testers know their mission and plunge

into their work without reservations, even if they were still developers

only moments before. The developers know what testing means and take

appropriate proactive steps. Later, they utilize their experience when

acting as testers on more demanding tests. Everyone knows that the only

good error is a known error and nobody gets bent out of shape. If feelings

do get hurt, it helps to exchange roles from time to time and have candid

team discussions. If the developer says this to the tester: “Hey, thanks for

your error report. I would never have thought of that!” then both of them

are on the right track.

The winner of the game is always the program being tested. The other

winner is the team of people that creates this program; they get a bigger

part in the larger game played within the company or on the market. In

his excellent article, Alistair Cockburn says: “The project has two goals: to

deliver the software and to create an advantageous position for the next

game. If the primary goal isn’t met, the next game may be canceled.”

[Cockburn, 2002]

1.4 Ideas, Techniques and Tools

This book is intended to introduce ideas, techniques and tools which can

be used for Rapid Application Testing: ideas for determining the right

questions to ask; techniques for devising a testing cycle that can answer

them; and tools for recording, interpreting and managing the test results.

The most important link in this chain is the first one: asking the right

questions. If your testing criteria are the wrong ones, even the most

ingenious testing cycle and the most sensitive measuring tools will not

help you a bit.

2 4 Ideas, Techniques and Tools

Ideas, techniques and tools are needed to:

� Detect errors

� Find the source of the error(s)

� Manage the testing process

Not all of these ideas will be applied to the same extent by both testers

and developers. In order to detect errors, testers require tools and

techniques to monitor programs and compare execution results;

developers on the other hand need tools and techniques for analyzing

how the program behaves. Both the tester and developer need to get an

idea of what could go wrong with the program.

Project managers and people with responsibility on the project need

techniques for assessing risk and tracking the current status of the project,

as well as numbers to use for decision-making and comparison with

reference data from other projects.

Two-fold benefit Many of the ideas proposed here can be beneficial in two ways. To get a

two-fold benefit means to carry out an activity which delivers a primary

and a secondary benefit. In our case, the secondary benefit is ongoing

quality assurance and control.

Because the line between developers and testers is becoming more and

more blurred in the real world, this book is not written for testers only.

Nor is it a manual on debugging for developers. Whenever it makes

sense, both perspectives should be addressed and various approaches

should be presented together.

In general, this book is not aimed at specialists buried in a particular field,

but rather professionals who can look outside their discipline regardless

of how specialized they are. Rapid Application Testing has a lot to do with

the fact that team members must play disparate roles in nearly every

small or medium-sized project. Large-scale projects definitely follow their

own rules—which have more to do with politics than with getting results.

Rapid Application Testers know their role in the game, understand their

significance to the project, and have recourse to every useful tool

available to plan, execute and analyze their test activities.

Testing: an Overview 2 5

2 Testing: an Overview

Quality means that the customer keeps coming back, not the

product.

(Herrmann Titz, founder of the Hertie department stores)

This book presents various techniques for testing software, evaluating

prototypes during software development, retesting functionality after

software has been modified or enhanced, and so on. These techniques

were developed for various purposes, but in pursuit of one goal: to

maximize the quality of the software product.

2.1 What is Software Quality?

Quality assurance is generally broken down into productive and analytical

quality assurance. Productive quality assurance includes all activities that

improve the product, while analytical quality assurance comprises

activities which ascertain its level of quality.

Within this schema, software testing belongs to analytical quality

assurance and falls within the subcategory called dynamic testing. The

most important statistical tests within analytical quality assurance are

reviews, code analysis and model validation. Tests alone do not improve

the quality of software. That would be like losing weight simply by

standing on the bathroom scale once a day. Tests and other analyses can

only reveal where there is a problem. Quality has not been assured until

the reported problems have also been eliminated.

2.1.1 Possible Definitions

There have been many attempts to interpret or define the term quality,

for example the definition given in the German industry standard

DIN 55350:

“Quality is the aggregate of all characteristics and properties of a product

or activity that relate to its suitability for meeting specified

requirements.”

2 6 What is Software Quality?

As obscure as this definition may appear at first glance, it provides some

important pointers for answering the question: What is software?

“Quality is the aggregate ...”

means that all characteristics and properties of the software are included

in the term quality, not merely requirements specified somewhere in

writing. Software can therefore meet all written requirements and still be

of low quality. The desired “look and feel” of a program or a consistent

user interface across all its modules is often left out of system or business

requirements. However, the quality of the software would be significantly

lowered if the design kept changing completely from screen form to

screen form, or if the meaning of function and shortcut keys kept

changing, and so on. A large number of informal quality characteristics

always accompany the formal ones.

"... that relate to its suitability for meeting specified requirements.”

Here is where the requirements for the program come into play. In this

context, "requirements" comprises more than the explicit requirements

included in a written specification. Equally important are the implicit

requirements generated by the product environment and the end user.

Kaner et al. list possible sources of such implicit requirements [Kaner

et. al., 2002]:

� Competing products

� Products from the same series

� Older versions of the product

� Internal project discussions

� Customer feedback

� Articles and books in specialized or technical fields

� Internal and general style guides for the user interface

� Compatibility with the operating system or IT environment

� Personal experience

Applications are not tested (or evaluated) against implicit requirements

most of the time. Nevertheless, implicit requirements should not be

Testing: an Overview 2 7

neglected. When implicit requirements are not met, software quality will

suffer—just as it will when explicit requirements are disregarded. In some

cases—especially when the user is directly affected—legal action may

even be taken to ensure fulfillment of implicit requirements.

What is missing from the DIN 55350 definition of quality is any reference

to the user. Features which “meet specified requirements” for an

experienced user may be useless to an inexperienced one—because they

are beyond him.

The IEEE standard on software quality (ANSI/IEEE Standard 729-1983)

includes a section on user requirements. According to the IEEE Computer

Society glossary [IEEE Glossary], software quality is:

1. The totality of features and characteristics of a software product that bear

on its ability to satisfy given needs; for example, conform to specifications.

2. The degree to which software possesses a desired combination of

attributes.

3. The degree to which a customer or a user perceives that software meets

his or her composite expectations.

4. The composite characteristics of software that determine the degree to

which the software in use will meet the expectations of the customer.

5. Attributes of software that affect its perceived value, for example,

correctness, reliability, maintainability, and portability.

6. Software quality includes fitness for purpose, reasonable cost, reliability,

ease of use in relation to those who use it, design of maintenance and

upgrade characteristics, and compares well against reliable products.

It is noteworthy that the IEEE Computer Society includes reasonable cost

among the quality characteristics of software. In a testing context, this

means that testing cannot go on forever—no more no less. At some point

(and that means pretty quickly), excessive testing will no longer enhance

the quality of the software, but rather diminish it—because it runs up

costs without achieving any corresponding improvement in quality.

28 What is Software Quality?

2.1.2 New Approaches to Quality

In his book Process and Product Orientation in Software Development

and their Effect on Software Quality Management, W. Mellis presents

two different notions of quality derived from different software

development models [Wiecz and Meyerh, 2001]. These contrasting

concepts imply very different testing strategies and methods.

Transformative
software

development

Transformative software development migrates a well-defined, clearly

understood and relatively stable process to an automated environment.

The process to be automated can also be precisely analyzed and modeled.

Requirements defined through analysis form the basis of software

development. The resulting software is high quality when it behaves

correctly and meets all requirements, and when its intended users can use

it without experiencing major problems. These days, transformative

development projects are very often in-house projects carried out by

large corporations to develop custom solutions. Customized software can

be built around a particular process with no ifs, ands or buts. Flexibility is

priority two, almost always substantially reducing the complexity of the

software. In this kind of project, tests based on system requirements and

system design can be planned well in advance. Chaos usually creeps into

this type of project only when a lot of users come forward with special

wish lists. This chaos can be contained if a formal requirements and

change management system is in place.

Adaptive software
development

In contrast to transformative software development, there is no clear-cut,

easily automated process of adaptive software development. This can be

due to several factors: The software is so innovative that potential system

requirements and user issues have yet to be researched. The software’s

area of application—its domain—is so chaotic that a process suitable for

automation cannot be identified. There are many processes which

conform to each other on a high level but vary in detail and must be

harmonized. This last is probably the most common reason. This usually

happens when off-the-shelf software is developed to please many diverse

customers and be compatible with their workflows.

Adaptive software development often starts with a vision. At the

conceptual stage, everything still fits together because "it just does." Then

the detail work begins. Developing a vision requires abstract thinking and

Testing: an Overview 2 9

creativity. The software kernel, which represents the least common

denominator of the process being modeled, must be made flexible

enough to allow the finished program to be adapted as closely as possible

to still unknown environmental conditions.

Here quality has little to do with correct behavior (nobody knows what

“correct behavior” would be in this case). Fulfillment of requirements

also drops out as a quality characteristic because the key characteristics

have not yet been formulated in a detailed functional specification (or

because the next customer has already specified different requirements).

Underlying
concepts

Naturally, underlying concepts behind quality, such as accuracy,

robustness, speed and fulfillment of the implicit requirements of the

application area also apply. The term quality has much more to do with

content in an adaptive software development process than it does in a

transformative one. Here high quality means that the software is generally

useful (or is fun to use or “cool”); that the abstract model works; that the

software is flexible and can be adapted to the unknown requirements of

the customer; that it supports rather than obstructs workflow; and that it

hits the bulls-eye and is a hit with users. These are all things which

become apparent only after the software has been released. Tests with

these criteria can hardly be planned ahead of time because adaptive

software development remains essentially an R&D project long after the

program has been rolled out.

2.2 The Overall Course of a Test

Before we jump into testing practices, I would like to present a brief

overview of what actually constitutes a test, of current general test

procedures and current types of testing, of how test phases are broken

down within a project, and of how and when other quality assurance

methods can be used.

A single test normally includes three steps.

� Planning

� Execution

� Evaluation

30 The Overall Course of a Test

Figure 2.1 General test procedure

Even if the person carrying out the test is not aware of these three steps,
they are still there—or conversely, if one of the three steps is missing, then
the process can hardly be called a test.

The test situation If someone sits down at a computer, starts a program and tries out a few
features, they are still not testing the program. But as soon as they are
perplexed by something specific in the program, and try to trace the
source of what they suspect is a problem, this becomes a testing situation.
It then includes the steps described above: Planning (“If I exit this text
input field empty and still click OK, the program will probably crash ...”),
Execution (“Let’s see if it does ...”) and Evaluation (“It sure did!”).

2.2.1 Planning

During the first step you determine what should be tested. This planning

step should not be confused with overall test planning which is carried

out as part of project planning. Detailed planning—also referred to as test

design in the literature—first identifies the test case, then specifies the

test activities, and finally indicates how test results should be defined.

This sounds very elaborate, but really in its essentials is simply an idea of

what has to be tested (“The programmer definitely didn’t think of this!”),

of how to proceed (“If I exit this text entry field empty and click OK

anyway ...”) and of what will be tested and when (“... the program will

probably crash”). One must also have an idea of the correct outcome

(“The program should be able to handle that”). Testing makes no sense

without a conception of the desired outcome. What use are test results if

you haven’t got any idea if they are right or wrong?

Tester Plan testing Execute
testing

Evaluate
tests

Testing: an Overview 3 1

Risk-based testingRapid Application Testing is risk-based testing. In Chapter 3, “Testing in

the Real World,” I have provided a description of risk assessment

methods that will help you determine your testing priorities based on

acceptance risks and technical risks. However, reliance on intuition as

well as method is an important part of testing practice. The ability of an

experienced tester to divine a program’s weak points is called “error

guessing.”

Always try to plan your tests so that they cover the widest area of risk

possible. At the same time, stay focussed on the single most important

risk: that the program will not work at all. You should always start with

the assumption that the program will be used in an optimal operational

environment—the so-called best case. Only after you have checked this

off your list can you begin to consider alternative scenarios.

Key featuresOrganize your test planning around the program features. Break the

features down into key features and supporting features. An example of a

key feature is that the user can save his or her work as a file to the hard

disk at a certain point in the program. A related supporting feature would

enable the user to select the directory path for saving work via a Browse

or Search button. Focus first on the key features. A key feature which is

buggy or does not work will be unacceptable to most users. The user can

usually find a work-around for errors in the supporting features.

Error frequencyTests can only prove that errors exist, not that a program is free of errors.

Just because 100 errors have already been found, that doesn’t mean that

1,000 more errors aren't waiting to be discovered. If you can’t find any

more errors, this could mean that the program is free of errors (this is

rarely the case). It could also just as easily mean that your test procedures

and cases are not up to finding the errors that are still there.

As a rule of thumb: Where there is one error, there are more. This is why

the results of previous tests should be taken into consideration during

test planning. This rule may apply to a module which has proven to be

particularly buggy, or to insufficiently secure access to resources such as

files, printers or modems. Or it may apply to specific workflows which are

inadequately or improperly supported by the program.

32 The Overall Course of a Test

Test planning Test planning for Rapid Application Testing does not mean planning and

formulating every single test case in advance. This method is not

particularly effective in most cases because it shifts you from risk-based

testing to a formal approach. It is more important that the overall testing

plan concentrate on key risk areas and provide possible testing strategies.

Detailed planning should remain flexible and take previous test outcomes

into consideration.

In addition, planning all test cases in advance is not an option when you

are getting to know the program to be tested through the testing itself.

During exploratory testing (see below), additions to the test plan are

always made based on the results of previous tests.

Your test plan will look very different depending on whether you know

the application under test from the inside out, or if you are only familiar

with its GUI. Hence the difference between White Box and Black Box

testing. Neither technique is better or worse than the other. Not only do

their requirements differ, but also their objectives. For a detailed

discussion of this issue, see “Testing Methods” on page 49.

2.2.2 Execution

The execution of a test is also a three-step process:

1. Preparing the testing environment

2. Completing the test

3. Determining test results

Special test data types may form a part of the testing environment as well

as metadata used to control the software being tested. In subsequent test

phases, the complete hardware environment may also be included.

The testing environment is a important factor for whether or not a test

can be reproduced. If a test must be repeated frequently, for example in

order to check performance improvements after program tuning, it

makes a lot of sense to automate preparation of the required testing

environment. Not only does this save time, it ensures that you won't

forget anything important.

Testing: an Overview 3 3

Test interfaceHow a test is executed very much depends on whether a test interface is

available for the program or component under testing. If this is the case,

the test interface can either be used to conduct the test interactively, or,

if the test is to be automated, to write a program which executes the test.

Test frameworks are available for this purpose for almost every

programming language. For more information on test frameworks and

how to use them, see Chapter 4, “Methodologies and Tools.” For more

discussion of test interfaces, see the section “Test-driven Application

Development” on page 191.

If no test interface is available, you have no other option than to test the

program or program unit using the end-user interface. Interactive testing

is only possible via the GUI in many cases, but this can be a real problem

in automated testing. For that you need a support tool that will record

and play back end-user inputs and mouse actions. See the section

“Automating Testing Procedures” on page 158 for an exhaustive

discussion of potential areas for automation.

Tool supportOften, one is also dependent on a support tool when determining test

results. For programs which work in conjunction with a database, for

example, the database must be accessible without having to use the

program. Systems with a distributed architecture may require tools that

can log and graphically display network traffic. Performance tests may call

for tools that can record the program’s response time.

Simple tests are normally all that is needed to reach a quick verdict on a

program's reliability and robustness. Bear in mind that a test is designed

to reveal problem areas. It is not the tester’s job to track down the source

of the problem—that is the task of the developer.

2.2.3 Evaluation

To evaluate a test session means to compare the actual test outcome with

what the correct outcome should have been. The expected (correct)

outcome should be easy to record for this purpose. You cannot test

whether a program output is correct or not if you have no idea what a

correct result looks like.

34 The Overall Course of a Test

If documentation exists, this is naturally the first place to go for

information on correct program behavior. Documented specifications

include development task descriptions and business models, application

flowcharts and text-based descriptions of application scenarios, GUI

design specifications, printouts of sample reports, Online Help, user

manuals, installation manuals and other related material. Whatever

behavior is documented there can be tested directly.

Considerations
for specialized

software

If accuracy in the context of a specialized field requires checking, then the

requisite knowledge must be made available for this purpose. Specialized

aspects may be mentioned in task descriptions, Online Help or user

manuals, but are rarely discussed in detail. The user manual for a financial

accounting software product is not designed to teach the user financial

accounting, but rather the use of this special application. As a tester, you

must usually rely on an expert in a case like this.

Validation
program

You may be fortunate enough to have another program available to

validate results produced by the program being tested. This is always the

case when the application under test outputs data which is required for

subsequent processing (or used by another program). If the program

under test creates an XML file, you won't necessarily have to eyeball the

file for correct content and format. The XML document can also be

opened in a program able to output XML files in order to verify that it is

well-formed (at the very least). Bear in mind, however, that the validation

program must not be too tolerant. If an error in the document being

tested is tolerated or overlooked, this will cloud the evaluation of your

testing results.

Verification test You should generally be skeptical if the evaluation of the test session only

includes outputs from the program being tested. You will frequently find

that faulty program behavior is hidden behind another set of errors which

behave similarly. For example, bad database field updates may be

overlooked if the developer simultaneously forgets to export the new

field to a linked report. Therefore, always try to validate results by using a

different tool. To verify the real result generated by a program which

writes data to a database, access that database directly with another tool.

Testing: an Overview 3 5

2.3 What is to be done with the test results?

The test result should be recorded in a “suitable form.” Easy to say, but

wait a minute: Which forms are suitable and which are not? This depends

on what you want to do with the test documentation. If the test runs

smoothly and no new errors are discovered, in most cases it is enough

just to record what was tested and when. Perhaps the program version

should also be stated.

If an error is discovered and included in a program modification (testing

and tuning), a short note is sufficient—in other cases, the result should be

recorded more formally, e.g. in a database of completed tests and

outcomes. You will find one suggestion for how to organize such a

database in the section “Quality Control” on page 231.

Error reportIn addition to general information (name of the tester[s], date of the test,

program tested, program version), the test document—the error report—

should document the three stages of the test, i.e. planning (what is

actually being tested), execution (how it was tested) and assessment

(what should have been the correct result, what was the actual result).

This entails as pragmatic an approach as possible. The following sample

report contains all three points in abridged form. “When the pickup table

is empty, a message box appears briefly when the program is started with

the missing text ‘[ERR] PickupTableEmpty’. When this happens, a default

sentence should be entered.”

The environmental conditions under which the test was performed also

belong in the test documentation if they are relevant to the test result.

They are of particular interest if the error cannot be tracked down in the

development environment. In this case, changes in the application's

behavior under various operational conditions often provide the

information essential for localizing the error.

It is also important that when a test is repeated after the error has been

corrected, the original conditions can be reproduced. For this reason, the

tester must have the detailed specifications he needs to reproduce the

test environment.

36 What is to be done with the test results?

2.3.1 Checking

The outcome of a test normally leads to modification of the application

and error correction. After this is done, the same test should be carried

out again to make sure that: 1. The error was corrected in the right way;

and 2. The right error was corrected. Since checking error correction is

very time-consuming and provides no new information, the tester often

prefers to leave out this compulsory check.

Don’t turn a
blind eye

When testing, you often find errors you were not looking for. In other

words, even if the testing is risk-based, it can produce test outcomes

related to less risky program behaviors. These outcomes are simply the

many small errors that an attentive tester notices in passing. These errors

should not be ignored—but rather reported. However, these less

important test results need not be checked. Checking should also be

geared toward the level of risk associated with a given program behavior.

As a tester, you should not waste time correcting incidental errors.

Figure 2.2 Testing, debugging and checking

Tester Find bugs

Bug report

Developer Debug

Reply

Tester Check debugging

Testing: an Overview 3 7

Accordingly, the procedure shown in Figure 2.2 should only be followed

when error reports and corrections are sufficiently important. The direct

path shown is only recommended if the number of error reports is low—

for instance in the final phase of a software product’s life cycle. In all

other cases, error reports are first collected. When the next program

version is released, the issues that have been dealt with are reported back

in one block. A central database is normally used for this. If the testers are

not members of the development team, someone on the team should be

given the job of screening and prioritizing the incoming error reports and

checking the outgoing replies.

Figure 2.3 Checking error reports and developer feedback

Development team

Action items

QA
person

Check
reports

Bug tracking

Define
action items

Check
replies

Tester Find bugs Regression testing

Client

Developer
Debug Generate new

build

38 Testing Strategies

It also makes sense to add change management to the responsibilities of

the QA officer described in Figure 2.3 (see “Test Case Tracking” on

page 233). But make sure that there are sufficient resources available for

this role to avoid creating a new bottleneck at this position. During hectic

periods, a QA officer is working flat out—pulling along two to three

testers on his left and three to four busy developers on his right.

2.3.2 List of known errors

If for any reason it is impossible to correct an error, the test results still

generate a list that tells you how reliably the software works in certain

situations. Such a list can, for example, be included in the manual under

the heading “known errors.” Moreover, it is always worth taking the

trouble to find out which mistakes were made most frequently during the

development. This kind of information will help you decide what

continuing education and advanced training your people need. Or it will

help you decide whether to change your software development process,

use different tools etc.

2.4 Testing Strategies

The strategy you should adopt for testing basically depends on whether

you are a program developer or an external program tester. In other

words, it depends on whether testing is integrated into the development

process or conducted independently. In addition, the level of resources

allocated to testing is obviously a crucial factor.

2.4.1 Exploratory Testing

If you aren’t familiar with the program to be tested, then you may want to

opt for a method called “exploratory testing.” When exploratory testing is

performed, the test cases are developed during testing, not before. The

results obtained from the first test cases help define subsequent test

cases.

The objective of this method is to reach the critical failure points in the

software as quickly as possible. It would be extremely time-consuming,

and above all a waste of time, if your first step was to get to know the

program, your second step was to plan your test cases, and your final step

Testing: an Overview 3 9

was to execute each test case one after the other. By the time you had

become expert enough to find and write down all the necessary test

cases, the next version of the program would already be out and the

software provider would have hired another tester.

Ideal testing
situations

If you do not know the program you have to test, then you are in an ideal

testing situation. In this situation, the program makes the same

impression on you as it will later on the user who opens the program for

the first time. Everything that you do not understand intuitively, or at

least after a reasonable amount of effort, points to a possible defect in the

user interface. Data processing problems and “roadblocks” in program

flow are most apparent when you are first getting to know the program.

Later, this awareness will be “dulled” as you get used to the program's

“quirks” and learn to avoid them.

A subset of exploratory testing is so-called guerilla testing. This involves

short but intensive testing of a limited section of a program by an

experienced tester. The objective is to ascertain the degree of risk posed

by this program unit. Using the most extreme means available, the tester

attempts to make the program fail in this area or crash. If the program

weathers the attack reasonably well, the unit “attacked” can be put on

the back burner for further testing or completely dropped from the test

plan.

You will find helpful links on the topic of “exploratory testing” in [Kaner]

and [Satisfice].

2.4.2 Testing and Improving (Testing and Tuning)

The most widely used strategy for testing within the development process

is probably simultaneous software testing and improvement. Testing and

error correction are not separated in this strategy. Testing is primarily seen

as “ground work”: a necessary step toward fixing parts of the program

that don't yet work very well. Testing and tuning of this type is a classic

developer strategy. Before a program module is released, the developer

tests whether everything is running smoothly and immediately corrects

any errors she finds. In this phase, the developer is also more concerned

with catching potential problem situations not dealt with during

development than with completing deliverables on schedule.

4 0 Testing Strategies

The Test Maturity Model (TMM) developed by the Illinois Institute of

Technology [IIT] unfairly labels this strategy as TMM Level 1: a default

testing approach to be “surmounted.” Nobody should still expect

developers to refrain from testing their modules before they are released.

Especially when you reflect that approximately ¾ of all code exists to

react to exceptions and errors, leaving only a quarter for the actual

processing instructions (many estimates even give a figure of only 10 %

for processing code). It is precisely this strategy of trial and error,

correction and repetition that works best for dealing with exceptions and

errors.

Testing and
improving

Therefore, testing and improving is in reality an important phase of

software development and the Test Maturity Model can be used to build

on this basic strategy. The first three stages in particular indicate how to

proceed. With level 1 as the point of departure (the testing process is

either completely undefined, or badly and chaotically structured and

overlaps with debugging), level 2 testing may be understood as a separate

phase in the development process which is typically carried out after

coding. Level 3 testing is then implemented as an independent activity in

the overall development process. In level 3, testing is now no longer a

phase after coding, but an integral part of analyzing, designing, coding,

integrating and distributing software.

Once testing is integrated into the development process, testers also

become members of the development team. In many projects, it is

standard practice for testers and developers to switch places. You test my

module and I’ll test yours.

2.4.3 Automated Testing

The importance of testing and automating tools has increased

tremendously as applications and system environments have grown more

complex. In most cases, currently available tools have their own

programming language for creating test scripts. The latest trend is toward

employing widely used script languages which can also be used for

software development itself, such as Perl or TCL, JavaScript, Visual Basic,

or similar languages. The job of creating automated tests is frequently

given to a programmer.

Testing: an Overview 4 1

The tools used in testing usually do more than find errors. The same tools

are also used to trace the source of the errors. There is no clear-cut

difference between testing and analyzing functions either.

Low cost
automation

In principle though, test automation does not require the deployment of

expensive tools. A great deal can be checked automatically using tests

embedded in the source code (see below). Test frameworks for

programming and managing unit tests can be downloaded from the

Internet [xProgramming]. Scripts can also be created using tools and

script languages which are either provided with the operating system or

available as freeware on the Internet.

Please note!Despite everything that automated tests can do to make your life easier,

you must not lose sight of a few realities:

1. Test automation has to be learned

Creating automated tests is initially very time-consuming. The

demanding learning curve must not be underestimated. If you only

have a little time for testing, it is not a good idea to count on test

automation. It is better to take your first tentative steps toward

automation in early project phases or during projects without time

pressure (if there is such a thing) and commit to slow, steady

improvement in your automation concept. Begin by automating only

simple (but important) tests. Alternatively, automate only portions of

the test procedure such as the preparation of the necessary test

environment. Over time, as you become more experienced, you will

also be able to automate more complex test scenarios.

2. Testing tools are no replacement for testing staff

Testing tools are only effective in the hands of a trained tester. These

tools are not machines—you cannot feed them the program and

expect them to spit out a tested program complete with a test

summary report. Risk assessment and test planning, preparation and

testing of scripts that specify how the test will be conducted, and

interpretation of the recorded results are all activities that no tool can

do for you.

3. Not everything can be tested, even with automation

As a tester or testing manager, you will have to accept the fact that not

everything can be tested. Implementing tools that automate testing

4 2 Testing Strategies

won't make any difference here. When planning an automated test,

focus on the risks associated with the program module to be tested,

just as you would for a manual test. Concentrate on technical risks and

place less emphasis on acceptance risks (for more information, see the

section “Risk assessment” on page 84). Technical risks associated with

the system environment provide the most fertile ground for automated

testing. If you have to test your software and all subsequent

modifications across several platforms, well-planned test automation

can save you a lot of work. By contrast, automated tests which

repeatedly check the same program feature in the same environment

will rarely turn up new errors. As a general rule, tests which are

designed to prove that a program works—referred to as positive tests—

lend themselves more readily to automation than tests intended to find

previously unreported errors (see the section “Smoke Tests” on

page 46).

4. Automated tests must be continuously updated

The process of creating an automated test often uncovers more errors

than the finished automated test script finds later.1 And just because

the scripts are finished does not mean that the work of testing is over.

If an automated test fails, the causes must be investigated. In many

cases, the test script no longer matches the software after

modifications or enhancements have been made. An automated test

does not distinguish between a program enhancement and an error. As

far as the test is concerned, anything which is different from last time

is going to be wrong. If the change is indeed not an error, then the

script must be modified accordingly. New scripts may eventually be

needed to test possible new scenarios generated by program

enhancements. Some routine automated tests may also persist long

after changes to system requirements have made them irrelevant.

Whatever the case may be, proceed on the assumption that automated

tests will have to be continuously developed and updated along with

the software. Increased focus on testing and continuous refinements to

test activities make for better quality software, but naturally at a cost.

1 Unfortunately, most of the errors that interfere with automated tests have no effect
on normal program use.

Testing: an Overview 4 3

5. Automating tests costs time and money

Kaner et al. [Kaner et. al., 2002] estimate the cost of creating an

automated test at ten times the cost of equivalent manual testing. My

own experience confirms this assessment. It takes approximately half a

day to automate a test procedure that can be done manually in 15 to

20 minutes. One tester will barely be able to automate more than two

such test cases a day. If you have identified several dozen (or even a

hundred) important test cases, you can easily calculate how long it will

take to automate all of them. The first scripts will probably be obsolete

by the time the last scripts have been created.

To expenses related to the creation and maintenance of scripts must be

added the price of testing tools. These vary from a few thousand

dollars for GUI testing tools to many tens of thousands of dollars for

stress testing and performance testing tools.

2.4.4 Testing by Using

One of the most fruitful testing strategies is called testing by using. This

strategy is especially well suited for testing quality characteristics within

an adaptive software development process (see the above section “What

is Software Quality?” on page 25).

Testing content
aspects

As explained above, the quality characteristics of an adaptive

development process are largely determined by content aspects. The

strategies used to test content aspects of the software differ from those

used to test formal aspects. Once the software has been pronounced

relatively robust and error-free, it must be used. Only through usage can

crucial questions raised during an adaptive process be answered:

� Is the software really useful? How could usability be improved? What

features are missing that would make the software really rock?

� Does the software support all (or at least the most important) user

workflows? Does the program enhance or impede workflow?

� Do the users see themselves and their domain of work reflected in the

software? Are the specialized terms correct, are the abstractions

logical?

4 4 Testing Strategies

� Is it fun to work with the software, or is it tiresome and annoying? Do

users feel overwhelmed or are they bored?

Testing by using must take place in a normal operational environment,

not in a usability lab. On large-scale or high-risk projects, a live testing or

beta testing phase is normally planned prior to product launch. On more

modest projects, but still risky ones for the developers, the software has

been known to remain perpetually in beta testing. You can use the

“testing by using” approach during your project at the module or

component level as well.

Modularizing Modularizing the program, i.e. breaking the required programming work

down into different levels (layers) or working with a modular component

architecture, is almost always a good idea these days. It is almost the only

way to cope with the complexity of modern software.

If your project has no formal budget for testing, or if nobody can be

spared from development to concentrate completely on testing,

following this approach will help you secure or improve the quality of

your software. Through modularization, layering or component

architecture, "real-world use" conditions are built into the development

process right from the start. They do not appear at the end after

development is over. Developers should be able to use each other's

modules, components, classes and features—preferably without looking

at the source code.

On some projects, all the developers are expected to own the source

code, meaning that they should all know their way around the source

code equally well. When following the testing by using approach,

however, it is better if the tester's familiarity with the program is

restricted to the GUI, the problem description, and a general statement

of the software solution.

A fresh point of
view is important!

The tester should not be too familiar with how the software under test

has been developed. To evaluate an idea, one needs a perspective

different from the one present at its creation. That’s why it is simply

better—safer and more effective—to have people on the project focussed

primarily on testing. This does not mean that testers cannot have other

roles on the project. Analysis and customer relations are responsibilities

Testing: an Overview 4 5

which overlap nicely with the duties of a tester. On the other hand, they

should distance themselves as much as possible from the design and

coding of the product. If you want to be a tester who programs, specialize

in the development of test scripts.

2.4.5 Testing by Documenting

Writing user documentation provides another opportunity to apply

testing by using. User documentation should not be handed over to a

developer—or at least not to someone involved in the development of

the program module in question—but rather to someone who has

actually experienced the program like a user. Doing this increases the

chances that the user documentation will answer questions that actually

interest users. On the internal side, whoever writes the documentation

must get to know the program before writing the user manual—and get

help from the developers as needed. This process closely resembles

exploratory testing, assuming that the documentation is not based merely

on task descriptions or other analysis documents. Instead, the writer of

the documentation should ask the same question every time he or she

writes a sentence: “Does it really work the way I say it does?” The writer

must also be able to execute a complete series of commands. This boils

down to making a working version of the software available to

documentation specialists rather than making them work with

screenshots. They need to be able to recognize problems and be allowed

to investigate them. In addition to having direct access to developers,

they should also have a say whenever the program they have

documented is being assessed. In other words, they must be the kind of

people who can tell developers: "Hey! Why didn't you make CTRL+C the

shortcut key for copying text?"

2.4.6 Regression Testing

When the behavior of a program changes for the worse after a

modification or addition, this is called regression. The goal of regression

testing is to bring a change for the worse to light. Regression testing’s

primary objective is to ensure that all bugfree features stay that way (also

see the next section on smoke tests). In addition, bugs which have been

fixed once should not turn up again in subsequent program versions.

4 6 Testing Strategies

Because regression testing should be repeated after every software

modification, or at the latest before the next product release, the desire

to automate these tests is particularly strong. Cem Kaner and others point

out, in Lessons Learned in Software Testing [Kaner et. al., 2002], that

automated regression tests quickly become obsolete (Lesson 117:

Automated regression tests die).

Because of the considerable expense, it is not a good idea to promote all

tests which have ever uncovered an error to the level of a regression test.

An easier and better way to reduce the risk of an error recurring in a later

version is to use Source Code Control Systems (SCCS).

Broad coverage
testing

Good regression tests include a lot. In other words, they cover a large

number of internal and external program features. Spot check tests (see

below) work well as regression tests when they cover a wide range of

validated input data. If data types processed without difficulty by earlier

program versions are now causing problems, this behavior provides

valuable clues for finding potential program errors.

Performance tests also lend themselves well to regression testing. If the

execution time of a transaction on the same computer significantly

deviates (by a factor of two or three) upward or downward in the new

program version, i.e. when the software has become dramatically faster

or slower in performing a particular step, then this behavior should be

looked into and the cause investigated.

2.4.7 Smoke Tests

Smoke tests are a battery of tests which check basic program

functionality. Smoke tests got their name from the smoke that rises

(metaphorically) from the computer when the software fails one of these

tests. We are thus concerned with a limited set of regression tests which

zero in on basic functional properties. If the software build fails smoke

tests, it is not acceptable and is not released for any further testing.

Smoke tests are frequently automated. They belong in the category of

positive tests—they aim to prove that a specific functional property exists

and that no errors crop up.

Testing: an Overview 4 7

One approach which is becoming more popular is the "nightly" build.

Every day, all the source code released by developers is combined into

one build and subjected to an automated smoke test.

Another variant is to give the developers smoke tests and make them use

them before releasing code to each other. This approach is always

attractive when the development team is dispersed across several

locations.

2.4.8 Embedded Testing

Smoke tests—or more generally regression tests—can be directly

embedded in the source code. In many programming languages, ASSERT

statements (or similar ones) are available for testing the preconditions of

a routine or a class method. This concept is known as “Design by

Contract” in the Eiffel language. In this case, the tests are directly

integrated into the language. When the keyword “require” appears at the

beginning of a method, a list of assertions is given that introduces the

preconditions. After an “ensure” keyword at the end of a method, there

follows a list of assertions introducing postconditions. After the keyword

“invariant,” additional conditions can be specified that are always true for

all objects of a class (invariants). The Eiffel compiler makes sure that all of

the assertions are executed, or none of them, or only the preconditions,

or the pre- and postconditions. A discussion of the “Design by Contract”

concept can be found under [ISEDbC]. Attempts to duplicate this

concept in C++ and Java are discussed in [Maley and Spence, 2001] and

in [Völter, 2001]. Java Version 1.4 and higher includes an assertion facility.

The documentation for Java 1.4 also provides some instructions and tips

for reproducing Design by Contract through assertions [JavaSun].

Permanent
regression test

In most programming languages, preconditions can be evaluated without

too much difficulty before a method executes. ASSERT statements or

simple IF statements at the beginning of a method ensure that all

assumptions for the start of a method are available. Checking

preconditions (Eiffel compiler’s default setting) is sufficient for our testing

purposes. When the postconditions of a method or the invariants of a

class do not hold, this becomes apparent at the latest when they are

evaluated as preconditions for the next method. If certain postconditions

48 Testing Strategies

or invariants are not used anywhere as preconditions, they probably are

not all that important.

Carefully testing the preconditions of all routines or methods is

equivalent to conducting a permanent regression. Test drivers are used to

make sure that all the functions under test have been invoked. The test

drivers record the return values or catch exceptions. In an object-oriented

programming language, test drivers can be stored as test code methods in

an abstract class. The advantage of this is that you save effort by managing

the code under test and the corresponding test driver together. They are

kept in the same physical location (most often in a source code file). This

“one source” principal has proven value in documentation and also makes

sense when working with code and test drivers, at least at the unit testing

level.

Speaking of documentation: Testing preconditions at the beginning of a

function has the pleasant side effect that the function’s preconditions are

correctly documented. Text descriptions of preconditions in function

headers or as constraints in a class model have an unpleasant habit of

becoming unreliable over time. When the preconditions for ASSERT or IF

statements at the beginning of a function are tested, the results are more

than comments. They describe real program behavior. Moreover, they

are actually readable, at least for software developers.

2.4.9 Live Testing

Live testing of a system is conducted by prospective users, initial users,

experts, fellow developers interested in the software, and so on. The

most well-known form of live testing is the beta-testing done prior to a

product’s official release. Given the ways products are released these

days, however, it is fair to include the first official versions in the live

testing phase.

As described in the “Testing by Using” section above, lives tests measure

software quality differently from formal tests. In addition, live testing

“thrives” on variety—variety in the ways the product is used, in the

ambient conditions, and in the potential operating failures that users can

contrive. This level of variety can hardly be achieved in testing labs.

Testing: an Overview 4 9

Results from live testing are often very vague. You might even receive

some pointless bug reports. However, live testing often yields surprising

and important information, for example that the program is being used in

ways not planned by the developers. One of the most important results

of live testing is the reconciliation of actual use with the expected user

priorities defined during risk assessment (see Chapter 3). In order to get a

picture of the software that is as valid as possible, it is important to recruit

users for live testing who resemble future customers as closely as

possible.

2.5 Testing Methods

Test procedures often differ greatly between functional and structural

tests. Traditionally, functional tests have been termed Black Box tests, and

structural tests White Box tests. Between the two, one finds a large group

of tests which do not fit into either category. These tests employ both

functional and structural approaches as needed for test case selection and

for developing test procedures. These increasingly important methods are

called Gray Box tests.

Figure 2.4 An overview of testing methods

2.5.1 Black Box Testing

With the Black Box method, the outside world comes into contact with

the test item—a program or program unit—only through a specified

interface. This interface can be the application interface, an internal

module interface, or the INPUT/OUTPUT description of a batch process.

Black Box tests check whether interface definitions are adhered to in all

situations. Product acceptance tests completed by the customer are also

Black Box tests. They test whether the product conforms to all fixed

requirements. Test cases are created based on the task descriptions.

Black box Gray box White box

Function Structure

5 0 Testing Methods

Naturally, it behooves the developer to conduct these tests prior to the

product’s release. That way she has a chance to find mistakes before the

customer does.

2.5.2 White Box Testing

In the case of the White Box method, the inner workings of the test item

are known. The test cases are created based on this knowledge. White

Box tests are thus developer tests. They ensure that each implemented

function is executed at least once and checked for correct behavior.

Examination of White Box testing results can be done with the system

specifications in mind. For example, the success of a transaction need not

be verified by checking a printout or an account balance displayed in the

program interface, but instead can be directly verified by reviewing the

resulting data since the data structure of the account is known. The

accuracy of the journal entry and the displayed account balance must still

be checked of course. White Box tests, therefore, do not replace Black

Box tests—they only ruin the suspense.

2.5.3 Gray Box tests

Hung Q. Nguyen [Nguyen, 2001] defines Gray Box testing as follows:

“Gray-Box-Testing consists of methods and tools derived from the

knowledge of the applications internals [sic] and the environment with

whitch [sic] it interacts, that can be applied in Black-Box-Testing to

enhance productivity, bug finding, and bug analyzing efficiency.”

Gray Box testing, like Black Box testing, is concerned with the accuracy

and dependability of the input and output of the program or module.

However, the test cases, risk assessments, and test methods involved in

Gray Box testing are developed based on knowledge of internal data

flows and structures. Gray Box tests often use the same tools to find

errors that software developers use to uncover the causes of errors, i.e.,

tools that let you directly observe the software's internal operations.

Component-based
IT structure

Gray Box testing rapidly acquires importance in a component-based IT

structure. This occurs because the notion of a component does not quite

fit either the Black Box or the White Box testing paradigm. The efficiency

Testing: an Overview 5 1

of a test depends on our mental model of the application under test. If

we think of a piece of software as a monolithic block, we will use the

Black Box testing method. If we are familiar with a program at the source

code level, and our mental model is composed of statements to be

processed, branches, nested elements, loops, and so on, then we will

lean toward White Box testing. However, if we view software as the

interplay of many components, we will develop test cases for risky

components and leave out components that are less fault-prone. We will

have a sense of how the components communicate and exchange

information, and use it to come up with ideas for tests.

Background
knowledge

Imagine that you were supposed to test a Web application and you were

completely ignorant of browsers, clients, and servers, as well as of the

necessity of connecting them. You would have viewed the Web

application like a desktop application. The test cases you would have

derived from this mental model would certainly have been different had

you been able to incorporate background knowledge of Web applications

into your model. You would probably have found errors for which the

browser vendor or Internet service provider was responsible. The

awareness of the distances involved in Internet communication is enough

to make us tolerate response times that we would never accept from a

desktop application.

Gray Box testing is also the method of choice for Rapid Application

Testing. Due to time constraints, we will limit ourselves here to functional

tests, where availability, reliability, performance, and robustness are seen

as software functions. However, we will get ideas for effective test cases

wherever we can find them—mostly from our knowledge of internal

structures and their inherent risks.

2.6 Types of Functional and Structural Tests

2.6.1 Requirements-Based Testing

As the name suggests, requirements-based tests are tests created using

functional specifications. These tests check whether the program is doing

what it is supposed to do. Requirements-based tests are often acceptance

tests. Acceptance tests differ from other types of tests in that they do not

5 2 Types of Functional and Structural Tests

try to find errors. Instead they aim to prove that all requirements have

been met. This makes them positive tests. Test cases for acceptance tests

are most often structured in such a way that they cover the fulfillment of

a single acceptance criterion.

Sometimes, this is easier said than done. If an acceptance criterion states

that a search for a customer in a database of customers should last no

longer than five seconds, irrespective of the search criteria, should the

corresponding acceptance test actually build queries to the customer

database covering all combinations of all search criteria and test the

duration of each query? A set of 10 search criteria would already generate

1023 combinations. This procedure is so time-consuming that only a

program can do it. Therefore, acceptance tests with criteria like these are

sometimes executed in spot check testing. Alternatively, an extended

testing period is arranged to get people using the program earlier. The

hope is that any critical requirements gone astray will be found in this

phase.

Implicit
requirements

As outlined above in the section “What is Software Quality," there are not

only explicitly formulated and documented requirements, but also de

facto requirements derived from the software type and software

environment. These implicit requirements are not dealt with in

acceptance tests, but they can provide important test cases, especially for

evaluating the design of the user interface.

Whatever is not explicitly stated in the functional specifications is also not

a contractual acceptance test item. If the functional specifications

indicate that a data entry field should accept date values equal to or

greater than the current date, and if nothing is specified for date values in

the past, then the current date and a later date can be entered in an

approval test, but never an earlier date. However, if you want to deliver

high-quality software, you won't be able to stop yourself from entering a

date value less than the current date just to see what happens. Not only

that, the integrated quality assurance process should have uncovered this

flaw in the requirements specification well before acceptance testing (see

the section “Integration of Phases in Rapid Application Testing” on

page 64, and Chapter 5, “Agile Quality Management”).

Testing: an Overview 5 3

2.6.2 Design-Based Testing

These tests check adherence to design specifications. The most obvious

example are GUI specifications. Using this method, one can check

compliance with layout specifications. This will ensure that the entire

program has a consistent look and feel. Possible test fields include font

size and type, button size, label location and so forth. Many of these

items can be checked with automated tests. In most cases, however, you

will have to write a program to test adherence to your design

specifications.

Other design specifications may also affect workflow. For example, if

users are required to confirm all their deletions, this is definitely a design

feature that should be tested. This is also true for design specifications

that affect implementation, such as coding guidelines, naming

conventions and database design requirements. Requirements like these

are usually reviewed rather than tested.

2.6.3 Code-Based Testing

Code-based tests deal directly with the source code. This is always White

Box testing. For one thing, code-based tests should check whether

program code is generating run-time errors. Code-based tests are also

used to assess the efficiency of algorithms.

Code-based testing is more important (and resource-intensive) when

interpreter programming languages are involved. Unlike compiler

languages, these are not highly-typed. If highly-typed language is not

used, then a compiler will not be able to catch assignment errors because

most value types are only implemented at runtime. This flaw can be

spotted with code-based testing. Other sources of run-time errors, which

also apply to compiler languages, include accessing database fields based

on field name, accessing dynamic memory, pointer calculations etc. These

are all things whose results only become known at runtime.

Runtime errorsIn order to minimize runtime errors, code-based testing activities attempt
to cover as much of the program as possible. Each line of source code
should be gone over at least once. Along with this statement coverage,
there are other degrees of coverage which we will discuss in more detail
later on.

5 4 Types of Functional and Structural Tests

Code-based tests are normally run by the developers themselves. Their

most important tool is a state-of-the-art source code debugger. It is a

good (and profitable) habit to begin your examination of a new program

function by completing a walkthrough using a debugger. Many special

situations, oversights, or things which developers like to skip over during

coding will often strike you immediately.

2.6.4 Performance Testing

Performance testing is designed to measure how quickly the program

completes a given task. The primary objective is to determine whether

the processing speed is acceptable in all parts of the program. If explicit

requirements specify program performance, then performance tests are

often performed as acceptance tests.

Performance tests are also suitable for regression testing (see “Testing

Strategies” on page 38).

As a rule, performance tests are easy to automate. This makes sense

above all when you want to make a performance comparison of different

system conditions while using the user interface. The capture and

automatic replay of user actions during testing eliminates variations in

response times.

2.6.5 Stress Testing

Stress testing is a form of performance testing which measures program

processing speed as system load is increased. System load typically means

the number of concurrent program users (clients). It may also refer to the

volume of data to be processed, the number of data records in a

database, the frequency of incoming messages or similar factors.

2.6.6 Robustness Testing

Robustness or stress testing determines the conditions under which the

program will fail. To do this, system load is increased (see “Stress Testing”)

in order to determine the point at which the load can no longer be

processed. The program's behavior in this situation is observed.

Testing: an Overview 5 5

Alternatively, resources are successively removed from the program in

order to reach the minimum resource requirement level and to determine

how the software behaves after resources fall below this point.

2.6.7 Long-term Testing

The objective of long-term testing is to determine that software does not

become faulty after prolonged use, i.e., that it does not eat memory,

significantly alter its processing speed, or flood disk space with temporary

files, or that internal stacks do not overflow or other similar problems

occur. Long-term testing may take hours, days or even weeks.

2.6.8 Installation Testing

Installation testing establishes that a program can be installed and

uninstalled on the various target platforms that it was designed to

support. This includes testing of both clean installs and updates of

currently installed software.

If necessary, older program versions that are still in use are installed.

These are then updated to the most recent version. The expectation is

that data created by the older version will be correctly updated and that

the software is still problem-free when fired up immediately after the

update.

An additional topic related to installation testing is user permission.

What rights does a user need to install the program? If administrator

rights are required for installation, for example, a check is made of what

happens when a user without administrator rights tries to install the

program.

2.6.9 Security Testing

Security testing determines whether the program and its data are

protected from hostile access. A distinction is made between external

attacks, via the file system for example, and internal attacks, in which

users attempt to access information without proper authorization.

5 6 Testing Types with Various Input Data

2.7 Testing Types with Various Input Data

An entirely different way of distinguishing among testing types is to look

at the range of possible input data.

2.7.1 Random Data Testing

Random data tests confront the application under test with input data

generated at random. Typically, testers pay no attention to expected data

types. They feed a random sequence of numbers, letters and characters

into numeric data fields.

Documenting test activities and recording results can be a problem with

this type of test. Little is gained by simply starting the test and noticing

after a while that the program has crashed. The sequence of characters

fed to the program must be recorded in order to determine which

sequence of input data caused the program to misbehave.

Area of testing Furthermore, it is usually not possible to thoroughly check the state of

the program after each random operation. So you have to concentrate on

one area of testing. Candidates are: robustness (the program should not

crash), data integrity (the database should remain consistent), as well as

operational integrity (the program should always be in a controlled state

and not run into deadlock situations etc.).

Random workflow testing is a subset of random data testing. In this type

of testing, input data is limited to control commands and mouse clicks.

Every button you can get to is clicked, menu items are selected, windows

are closed and so on. The same rule about recording results applies here:

Record the random sequence of mouse clicks or control commands to be

able to reproduce the test procedure later.

The point of doing random testing—or live testing—is to generate variety

which cannot be achieved using a deliberate, planned approach. This is

how a bug was found in VI, for example, even after the Unix editor was

considered a classic, completely bug-free program for years.

2.7.2 Spot Check Testing

Spot check testing resembles random data testing—they both have a

random component. But in this approach, input data is selected from a

Testing: an Overview 5 7

mass of real data that the software will encounter in its future area of use. To

make this approach work, you need the largest quantity of “real world” data

possible. Ask one of your customers (or better still, several) to provide you

with real-world data. The more data you have and the more heterogeneous

it is the better. Using a random algorithm, select a manageable subset from

this pool of data. Then feed the data to the system.

Again, the problem here is to define the expected outcome. If the

number of spot checks is small, you could come up with probable results

for each individual test. This becomes difficult when the number of spot

checks is great. If you want to make a preliminary determination of the

expected outcome of thousands of data inputs, your budget will

disappear fast. What does one do in this case? First, set a legitimate global

objective. If you have a posting program that you want to test with a large

quantity of real batch records, the first test goal should be smooth

processing of all correct records. If the posting program rejects particular

records, investigate these processing problems more closely.

Reference dataIf the set of test data corresponds to an exact time period, reference data

may also be available with final values or results for that period. In our

posting program example, a completed posting period would constitute

such a timeframe—perhaps a month. In a basic scenario, you would enter

the opening balances at the beginning of the month, feed the entire

month of posting records into the program, and compare the closing

balances with the known values held in the reference program.

One goal of spot-check testing, as well as of random data testing, is to

verify the integrity of the data after processing.

On database development projects, it is always advisable to deploy a

program for checking database integrity as soon as possible.

2.7.3 Boundary Value Testing

Boundary value tests are specific tests which check the most extreme

values of input data. A boundary value test checks how the program reacts

to entries in a two-digit whole number field between 0 (zero) and 99, as

well as to entries outside this range—e.g. from -1 to 100. Text fields are

filled in completely, left empty, or overfilled by entering an extra character.

5 8 Phases of Testing

Boundary value tests are always individual tests with expected outcomes

that can be precisely specified and checked.

For applications which write data to a database, it is a good policy to run

a boundary value test on the application interface. This way you can

ensure that data entry field lengths in the user interface correspond to

field length limits in the database. A common mistake is to change the

size of data fields during development and then forget to modify data

entry fields in the interface. However, this kind of test takes a lot of time

and effort. Assess the risk you are taking if the user enters an incorrect

maximum value into a specific data field in the database. Boundary value

testing should be automated for high-risk entry fields. Your best option is

to employ a program which identifies the entry fields in screen forms and

fills them with valid maximum values. Finally, directly access the database

to determine whether all completed fields actually contain the maximum

values.

When conducting a boundary value test of the application interface

(going in the other direction), directly access the database to fill the entry

fields in the GUI with maximum values. The interface is subsequently

checked to determine if all maximum values have been correctly

displayed.

2.8 Phases of Testing

Now that we have taken a close look at testing per se, and contrasted

different testing strategies, methodologies, test case types and input data,

the last question is when a given test should be carried out in the

development process. In the following section, we will turn our attention

to the timing and sequence of various phases of testing. Here we must

make a distinction between conventional test planning models and

production-oriented approaches within Rapid Application Testing. The

way in which testing activities are distributed within the development

process is often precisely what distinguishes Rapid Application Testing

from conventional approaches.

Testing: an Overview 5 9

2.8.1 The Classic Test Planning Model

The classic test planning model breaks the testing process down into

three phases:

1. Unit, module and component testing

2. Integration testing

3. System testing

4. Acceptance testing

Regression testing is special because it is not a testing phase, but rather an

ongoing activity in phases 1 through 3.

Figure 2.5 Classic test planning model

The classic test planning model is often depicted as a V to more clearly

illustrate the relationship between development and testing. According

to this model, the test cases executed during the testing phases on the

right are planned during the development phases on the left. The

feasibility study furnishes test cases for operational testing, the

requirements analysis provides test cases for acceptance testing, and

system testing takes its cue from the system design. The module design

specifies the interfaces to be included in integration testing. After coding

is underway, test cases can be prioritized for unit testing based on the

feature set and the structure of particular units (classes, methods,

V model for planning and testing

Feasibility study

Requirements analysis

System design

Module design

Coding

Operational testing

Acceptance testing

System testing

Integration testing

Unit testing

6 0 Phases of Testing

functions, etc.). This diagram is not meant to imply a "Big Bang"

development project. Given current development practices, the

development and testing phases shown here more likely represent the

flow of a single iteration.

Incremental? Iterative? Evolutionary?

If you are not familiar with the term iterative software development, see

below for a brief explanation of this approach. For an in-depth treatment

of incremental and iterative processes, you can consult the work of Beck

[Beck, 1999], Kruchten [Kruchten, 1999], Dröschel [VMOD, 1997] and

many other writers.

The incremental approach involves step-by-step development of a

complete system. The complete system is designed as a whole and then

built in steps. Each iteration adds more functional properties to the

system, but in a purely incremental approach the overall objective of the

system is clear from the start.

An iterative procedure entails breaking down the entire development

process into a series of like steps. Each iteration or step involves the same

set of activities: analysis of requirements, system design, construction and

testing. Before development begins, core requirements (only) are

specified and project parameters are defined.

The standard approach to software development nowadays is incremental.

In the case of object-oriented system development, projects are

frequently iterative as well.

In addition, there is the evolutionary approach. Here developers have the

opportunity to modify core requirements and product limitations every

time they start on a new product version. As a result of this, the new version

might not simply extend the previous one, but completely replace it.

Unit, Module or Component Testing

This category comprises all tests carried out at the program unit level. A

program unit may be an individual function or class method, or an entire

module or class in objected-oriented programming. In the following

section, we will use the commonly accepted term "unit testing."

Testing: an Overview 6 1

Unit tests are carried out by the developer of the given program unit.

Errors found in these tests are rooted out as quickly as possible. The test

which revealed the bug is repeated after the bug fix.

Unit testing is concerned with three questions:

� Have all the requirements for the program unit been correctly

implemented? The functionality specifications serve as the basis for

these tests. Hopefully, they clearly identify every individual

requirement. In the classic testing approach, the developer does not

have to worry about whether the specification itself is correct. The

developer is only responsible for its correct implementation. However,

this way of thinking does not belong in the integrated approach of

Rapid Application Testing! The developer who implements the

requirements is now the user specified in the specifications. As such,

he or she is entitled and even expected to view the specifications

critically.

� Have all design decisions been correctly implemented? Correct

implementation of the system design in a program unit is typically

checked during system reviews. Design decisions appropriate for

testing may include layout specifications for the application interface,

for example.

� Do all internal functions work flawlessly? These are the basic tests.

Internal functions, calculations, etc, are checked to establish whether

they return correct results. Important tests in this area confirm that

functions check parameters passed to them, handle boundary values

successfully, and so on. In these basic tests, each line of source code

must be executed at least once, but this is not so easy to achieve with

100% statement coverage. Later we will consider degrees of coverage

in situations like this where 100 % is sometimes inconceivable even

with all the good will in the world.

Checklists for unit testing typically include questions about:

� Functional correctness and completeness

� Error handling

6 2 Phases of Testing

� Checking input values (parameters)

� Correctness of output data (return values)

� Optimizing algorithms, performance

Integration Testing

Integration testing checks whether program components interact

correctly. Program units previously tested at the unit level are assembled

into larger components. When testing involves multiple functions in a

single module, or integrated methods in a single class, this is still

considered part of unit testing. The interaction of modules with other

modules is the domain of integration testing.

Integration testing is thus not concerned with the implementation details

of individual units, but rather with the requirements and design decisions

that apply to their interaction. These might be requirements related to

response times, for example, or to workflow between individual

modules, access protection during multiple user operation, or individual

access rights, etc.

Depending on the size of the organization and the resources available,

integration testing is performed either by the responsible developer (or

development team), or by a separate testing group.

Checklists for integration testing include these items:

� Functional correctness of transactions across several modules

� Interaction of menus, toolbars, function keys and called program units

� Interaction of processing and interface modules

� Response of program components to system events

System Testing

When complete systems or add-on modules are deployed, system testing

is performed. System testing deals with questions like completeness,

performance under heavy system load, security, integration in the system

environment and so on.

Testing: an Overview 6 3

When system tests are performed, they are often assigned to a separate

testing group.

System testing checklists include questions about:

� Functional completeness of the system or the add-on module

� Runtime behavior on various operating systems or different hardware

configurations.

� Installability and configurability on various systems

� Capacity limitations (maximum file size, number of records, maximum

number of concurrent users, etc.)

� Behavior in response to problems in the programming environment

(system crash, unavailable network, full hard-disk, printer not ready)

� Protection against unauthorized access to data and programs

Regression Testing

Regression testing does not constitute a single testing phase. Instead, it

involves repeating tests from the first three phases to test specific features

or subfeatures.

If any part of the program is modified or enhanced, it should be subjected

to a new unit test by the developer. It is not sufficient to limit the testing

to new functionality. The developer should also ensure that the

modification does not interfere with existing functionality. This can best

be achieved through the use of embedded tests (see “Testing Strategies”

on page 38) in combination with test frameworks.

Every part of the program which is supposed to work with the modified

or enhanced unit should be subjected to integration testing. System

testing should also be repeated prior to release of new software versions.

Because of their high cost, basic integration and system regression tests

are done as automated smoke tests (see “Testing Strategies” on page 38).

Extensive regression testing is only carried out in preparation for a new

release.

6 4 Phases of Testing

Acceptance Testing

Acceptance testing takes place after the development team has released

the program. These tests are performed by the customer (or

representative of the customer). The operational conditions are defined

as the normal installation conditions.

If a formal acceptance test is part of the contract, you as the software

vendor should develop the test cases yourself whenever possible. Base

them on the requirements specification and guidance from the customer.

This way you prevent a contractual acceptance test from becoming an

acid test of the software’s usability.

In the context of agile project management and integrated quality

management, acceptance testing is synonymous with collaboration

between the customer and the development team. Even at this late stage,

there is a real possibility that hidden bugs may crop up when using the

application under real-world conditions. Change requests should always

be welcomed by an agile project team after all, there is no way to avoid

them.

For more information on agile quality management, see Chapter 5.

2.8.2 Integration of Phases in Rapid Application Testing

The classic test planning model is based on the software production

process.

If you flatten the V from Figure 2.5, you get a timeline of production and

testing phases. The sequence of phases is reminiscent of the waterfall

model. Advocates of structured processes argue that the waterfall model

can still work for single, manageable iterations.

Problems with the
process-oriented

approach

The problems of a process-oriented approach to testing are made

abundantly clear in Figure 2.6. Errors originating in any production phase

may surface in any testing phase. If test cases are developed in the

analysis phase or at the latest in the design phase as specified in the V

model they will probably find bugs generated during analysis and design.

As a result, the potentially most serious bugs will be discovered during

the last phase of testing before delivery. Whoopee!

Testing: an Overview 6 5

Figure 2.6 Classic production and testing phases

Rapid Application Testing is Integrated Testing. It is not organized around

production phases, but rather around software products (or intermediate

engineering products).

Analysis

Design

Implementation

Unit testing

Delivery

Integration testing

System testing

Iteration 1 ... N

6 6 Phases of Testing

Figure 2.7 Building and Testing Products

Products of software development exist as soon as someone uses them.

Once products exist, they should be tested ASAP. It doesn’t really matter

which product was built in which phase. What is important is which

testing method suits which product. The question of whether a user

interface prototype will be available during analysis or design, or later

during clarification of implementation details, is secondary. It is more

important that developers, designers and system architects have the right

idea at the right time: "Product XYZ (a model, prototype, use case, source

code, . . .) would help us here, and I or somebody else could check it with

method ABC (review, walk-through, test, using the app, . . .)."

"Impromptu"
testing

Rapid Application Testing is essentially "impromptu" testing. Production

and testing phases alternate as products or intermediate products

become available during development. Once a software analysis

document has been created, it is reviewed. Design decisions are checked

as soon as possible against a model. As soon as a class is fully

programmed, it is tested and then used. When the team follows a

strategy of "early integration," integration tests are also performed on an

improvised schedule. In extreme cases, a general build is created several

times a day and automatically run through the most important integration

tests.

Iteration 1 ... N

Use cases

Requirements

Business model

Analysis

Design

Implementation

Integration

Delivery

Use

Testing

Walk through

Review

Interface

Design model

Source code

Modules

Production Check

Testing: an Overview 6 7

Figure 2.8 Yin and Yang in Software Development

Although Rapid Application Testing neither requires nor implements a

progression of testing phases for software development, we can still use

the phase of testing concept and the well-established terms “unit

testing”, “integration testing”, “systems testing” and “acceptance testing."

From a product-oriented perspective, these phases are tied to a product's

(or intermediary product's) journey through the development process.

The modules and subsystems indicated in Figure 2.8 are only examples.

In the development of products of any magnitude, there is an inseparable

link between building and testing.

Production and continual testing of software products form an integral

part of any development process. Ideally, each activity checks the quality

of its own input variables. This requires critical thinking and good

communication from everyone involved on the project. Specialists give

seminars to share their knowledge, architectures are discussed and

compared, design decisions take software testability into account,

programmers know how to test, and testers concentrate on system-

dependent weak points.

Production

Check

Production

Check

Production

Check

Production

Check

Module 1
Module 2

Module 3

(Sub) System

68 Other Quality Assurance Methods

2.9 Other Quality Assurance Methods

For a long time, testing was the most commonly employed method to

assure software quality. In some cases it was the only method. This was

unfortunate. Timely reviews during product development, for example,

could have found many more bugs and different ones than testing alone.

Reviews are usually cheaper than tests, and reviews of existing programs

and projects are an excellent way to learn from past mistakes. The results

of a review can find their way into the next project's analysis and design

templates, coding guidelines and process improvements.

Of course, no one can afford to dispense with testing simply because

regular reviews have taken place. The number of retests conducted after

bug-fixes can be reduced dramatically, however, if there are fewer bugs to

fix. Static code analysis and model validation methods also provide a

similar benefit (see below).

2.9.1 Design and Code Reviews

There are two types of reviews: peer reviews and group reviews.

Peer reviews Peer review means that one developer takes a good look at another

developer's code. The reviewer should have at least the same level of

expertise as the reviewee. Naturally, the process works better if the

reviewer has more experience and better qualifications. Peer review can

happen informally at any time. Or it can become de rigueur prior to first

releases and the integration of new modules. Peer reviews are the most

frequent type of review in Rapid Application Testing.

Group reviews The second type of review is a group review. In this case a developer

presents his module to the group and the group asks questions (“"Why do

you use PRIVATE here instead of PROTECTED?"”), makes suggestions for

improvement (“This loop could be optimized by doing this ...”) or turns up

weak spots (“That won’t work there because...”). This type of review is

something like an oral defense in graduate school. Group reviews are

important at very critical stages in development and as post mortems

after iterations.

Combining
the two

The two types of review can also be combined. In this case, each member

of the group takes a section of code or a specific feature, method or sub-

Testing: an Overview 6 9

module and examines it alone. The results are summarized as bullet

points and then discussed within the group. This combination approach

makes it possible to review larger program components than is possible

with pure group review a big advantage. At the same time, each

participating developer gets an opportunity to learn something from the

discussion and to share his opinion on a section of code.

For document reviews the procedure is the same. However, different

questions are raised here. For example, when reviewing a requirements

specification, team members might focus on whether each requirement

has a testable acceptance criterion, or whether specifications are

technically feasible at all, or whether they are unambiguously worded, or

whether two specifications contradict each other.

When reviewing a class model, attention should be given to whether

class assignments are correctly distributed, whether the visibility of class

attributes is specified correctly, whether the class methods and attributes

have been uniquely named in each case, etc.

For group reviews that take place frequently, it is advisable to compile

checklists. These are first distributed to reviewers along with the object

under review. Next, the reviewers go down their lists. Finally, each

reviewer presents his points in the group session.

2.9.2 Static Code Analysis

Static code analysis does not observe software during runtime (as testing

methods do), but instead analyzes source code directly. Through analysis

structural errors are hunted and caught. These may include:

� Unused variables

� Unreachable code

� Missing return values

� Language dependent errors such as

� Invalid nesting

� Invalid allocations of values

� Calling non-existent procedures

70 Other Quality Assurance Methods

This type of statistical code analysis is built into most modern compilers

and produces error messages and warnings.

More extensive code analyses check for adherence to coding rules. In

general, this requires an add-in tool for each programming language.

Most analysis tools on the market also allow you to specify your own

coding rules and even have them checked as well.

2.9.3 Model Validation

Modern modeling tools designed for database modeling, or for creating

class and object models for applications, also use validation methods. For

example, database models created with state-of-the-art modeling tools

can be automatically analyzed for redundant or missing indices,

consistency of external and primary keys, tables without fields, etc. In

addition, it is possible to make a reconciliation between the model and

the database.

Model validation can only be used if the model is exact and sufficiently

detailed. This is frequently the case when modeling databases, however,

because complete databases can now be created directly from models

without any further operations. In principle, this is also possible for

modeling classes and objects, but this approach is very seldom taken.

Class and object models are usually only sketches which facilitate an

exchange of ideas. Whether formally correct class and object models will

one day replace programming in high-level languages, or whether

programs will one day be generated using only models, remain hotly

debated issues.

Testing in the Real World 71

3 Testing in the Real World

Each day is 24 hours in length, but the width varies.

(Wolfgang Neuss, cabaret artist and philosopher)

3.1 Developing and Testing

Rapid Application Testing focuses less on the phases of software

development and more on the products or intermediate products of each

phase. Products and intermediate products of development are also

referred to as “artifacts” in the Unified Process Model [UPM]. In Rapid

Application Testing, each artifact is tested explicitly or implicitly: explicitly

when implementing test procedures tailored to the special product type,

and implicitly when using artifacts critically in the continuing development

process.

Manufacturing
quality

Testing procedures can only determine product quality or the lack thereof.

They cannot manufacture quality. Therefore, product development

approaches and testing procedures must be complementary. Ideally,

development will be strengthened by parallel quality testing of all

preliminary products that flow into the final product. This sounds harder

than it is. What you need are committed and interested team members; a

project environment conducive to the exchange of ideas; and a simple

process that avoids unnecessary formalism and permits substantive

changes at any time.

3.1.1 A case study

The following case study presents some possible testing procedures for

typical products and intermediate products of software development.

Not just testingIt is not limited to testing in the classical sense, but also includes different

types of testing such as document reviews, walkthroughs, prototyping

and model validation. Concrete examples from actual practice better

reveal how all these procedures can be combined into one approach that,

in addition to rapid application development, also achieves permanent

quality control and expeditious discovery of the most important errors, a

72 Developing and Testing

kind of Rapid Application Testing. Kent Beck writes in the conclusion of

eXtreme Programming explained [Beck, 1999]: ”I am afraid of doing work

that doesn’t matter.” Anyone who has tried to deliver a product he can

stand behind with a typically inadequate budget for software

development can relate to this.

The example considered here is a software module used for licensing a

data analysis program and monitoring compliance with the contractual

terms of the license. The documents provided are based on original

project documents. The development process essentially unfolded as

presented here. The licensing module has been in use since the end of

1999. No modifications or corrections have been required since the

release of the first version.

In cases where a procedure did not produce any meaningful documents,

I have brought in samples from other projects.

Task description, software development task description

Usually, the first document created when developing new software is

some kind of a task description. In this case, the license module was

defined as a subtask in the course of preparing the overall project task

description. From the very beginning, the licensing process was

designated as a “module” without specifying any particular program

structure to make it work.

Task Description for the Licensing Module

The licensing module should ensure that the XYZ system can only be used

on workstations stipulated by the terms of the license. Licenses were

issued:

� For each workstation

� With and without expiration date

� For each database to be analyzed

� For a set number of analyses per analysis type

Testing in the Real World 73

Compliance with these licensing terms must be monitored by the

licensing module.

...

Specifying tasks in
writing

The task description was approved and endorsed by the customer.

The following items are relevant to QA:

� The tasks to be performed by the program are specified in writing.

If a written analysis is required, one is forced to think more deeply

about a topic. In addition, a document is created that can be checked

and which serves as an aid to memory later on.

� The task description will be subject to a review which involves the

customer.

Even if you have received only one call from the customer requesting

a special program feature, you should document that telephone

conversation and submit a summary to your customer.

� The task description is signed off by the customer.

This can be done formally (with a signed contract) or verbally. If the

customer does not explicitly request any changes to the last telephone

conversation report, you can usually assume that you have correctly

understood and described the task. Work can proceed on this basis.

Developing a concept

Working closely
with the customer

Initial conceptual work on the system design included an analysis of the

situations the program had to guard against. For example, the user of the

analysis program might try to hack his way around the licensing system

and the program had to be able to react effectively. The project team

prepared a document laying out various security solutions and associated

(developmental and administrative) costs and went over it with the

customer.

With the aid of these written system design proposals, the customer was

able to decide what level of protection he wanted against software

pirates and fraudulent users.

74 Developing and Testing

Figure 3.1 Excerpt from the system design proposal

Assigning
resources based

on risk

System design was identified as a high-risk step, because the

development team would not have time to learn important lessons from

the module's initial use. If at all possible, the licensing system was

supposed to meet the customer's security requirements right off the bat.

It was unlikely that bug reports would come in from hackers who cracked

the licensing system.

That’s why extra effort went into quality assurance during drafting of

system design recommendations:

� Brainstorming and review

Several developers met and came up with attack scenarios and

possible safeguards, which they discussed in depth. The developer in

charge of the licensing module summarized the discussion points into

a recommendation which he circulated within the team for review.

� Feasibility testing

In order to be able to make an informed estimate of pending

development costs and subsequent administrative costs related to

...

If the passwords are permanently stored within the program itself (such as the
xyz password), a hacker who is able to crack the ... algorithm and successfully
decompile the program will have gained access to the passwords.
Furthermore, the passwords could only then be modified by the developer.
This is why we are proposing adoption of the ... solution.

Implementation and administration expenses:

1. The least expensive implementation can be achieved by adopting the
software design approach using xxx because the in-house activation of
workstations and external program licensing follow the same procedure.
Only the contents of the license file vary. The license file and the INI file can
be created and maintained using the administration program for the
program licenses. No dongle administration is required.

2.Compared to Solution 1, dongle-based activation requires slightly more
implementation effort because the license file must be used in conjunction
with the dongle. Additionally, a procedure for deactivation must also be
provided for in the program.

...

Testing in the Real World 75

deployment of the licensing system, the build and maintenance of

licensing files and dongle programming and other options were tested

in advance.

� The system’s limitations were clearly stated

The system design recommendation also covered scenarios which had

not been safeguarded against. It described in detail a scenario which

could only be prevented using an external system that compared

system date and time. This gave the customer the possibility of

choosing whether to guard against this potential scenario.

� Involving the customer

The system design recommendations were fully discussed with the

customer. Examples of potential risks were used to illustrate the pros

and cons of each security procedure. The development team's

recommendation reflected the known requirements of the customer

up to that point and was accepted by him.

Use case analysis

Use cases are
requirements

Using the approved system design, a brief use case analysis was

performed in order to determine where in the complete program the user

would come into contact with the licensing system.

Figure 3.2 Use cases of the licensing module

User

Program start

Program end

Activate
workstation

Increase
expiration date

Correct
control date

Run
authorization

{first call}

{expired}

Correct
checksum

{system date changed}

{data source changed}

76 Developing and Testing

Each use case in Figure 3.2 was discussed in an accompanying text file.

Test Cases for Later System Testing

Later on in the project, a table of individual requirements and

corresponding test cases was prepared based on the text descriptions of

the use cases.

Figure 3.3 Test cases for individual requirements

GUI prototype

Generating
multiple uses

Using a GUI prototype, the customer was given a demo of the steps to be

completed by the user in the individual use cases. The GUI prototype

consisted of fully implemented screen forms with no functionality. The

prototype already incorporated the GUI element classes intended for

actual use. Thus there was no additional cost for building the GUI

prototype because the forms were reusable.

The build of the GUI prototype is the first opportunity for the developer

to test system design ideas using a concrete procedure, and to think

about functions needed later. At the same time, the GUI prototype

represents the first visible "product" the customer can evaluate and

approve. Very early on, the customer gets a good idea of what the

No. Requirement Test cases
(expected result)

1 Activating a workstation

1.1 An activation code must be
requested when booting the system
on a deactivated workstation.

1. Boot WS (workstation) using the valid
activation code (valid program start)

1.1.1 The activation code must be unique
for that workstation. In order to
activate two workstations, two
different activation keys must be
required.

2. Activating WS1, then activating WS2
using the same key (WS2 cannot be
activated)

3. Verification test: Activating WS2 with
the valid activation key (WS2 can be
activated)

1.1.2 Program startup must be rejected if
the valid activation key is not
entered.

4. Attempt to start using invalid
activation key (program start not
possible)

5. Attempt to start without activation
key (program start not possible)

Testing in the Real World 77

program is going to be like to use in our example, of what the licensing

module will look like to future licensees.

System Design

Modeling means
simplifying

Before coding starts, important processes are modeled in activity

flowcharts. This helps make the rather opaque internal processes and

relationships of individual use cases more understandable.

Figure 3.4 Activity flowchart of program start

Each individual activity is represented in the diagram by a rounded

rectangle. If an activity in the diagram casts a shadow, this indicates that

the details of the activity are illustrated in an additional activity flowchart.

The arrows between activities represent the paths the program takes if

the conditions specified in brackets are met. For some activities, dashed

arrows indicate status changes in individual objects called by the activity.

The example depicted in Figure 3.4 shows that the activity “open license

file” changes the status of the object “license file” to “open,” which

corresponds to a value greater than zero in the “nHandle” attribute.

Start

[not activated] {Canc

{Canc

LibraryTest

{OK}

{activated}
{OK}

Open license file

Check activation

Check system
environment

License file
{open, nHandle > 0}

[changed]

Activate
workstation

Correct environment
checksum

78 Developing and Testing

At this stage, activity flowcharts do not document actual, existing

systems. Rather, they serve as tools for developers to formulate more

detailed concepts of the program they are building. Many developers use

this method to model only parts of the system, if at all. They model

complex components that they cannot design in their head. Modeling

becomes a creative process using pen and paper, or mouse and screen.

Going through
scenarios

An activity flowchart for acting out various scenarios helps to check

whether the modeled activities actually produce the desired system state.

Program walkthroughs can take place even before the first line of code is

written. Regardless, the scenarios can be acted out very realistically using

the activity flowchart, and the results can be checked and reconciled with

the desired results.

To determine a testable result, current values of individual attributes are

tabulated. Figure 3.5 shows an excerpt of a table from a model

walkthrough. First, the scenario to be checked is described. At this point,

one defines only the context that should apply to the walkthrough. In

the "results" field of the table, a detailed description of the results from

individual activities is entered.

Figure 3.5 Table of activities in a model walkthrough

2.1 Scenario: Starting and Exiting a Program, Best Case

The license file has been correctly installed, the workstation has been activated, the
expiration date has not expired and neither the system environment nor the system
date has been changed. The license file is stored in the program directory. The
program is started, the program is used and the program is subsequently exited.

2.2 Sequence:

Step Activity Result NHandle IValid License file
status

1 Program
start

0 .F. closed

2 Library test OK

3 -> Open
license file

3.1 Search for
license file

Program
directory

3.2 PP_LFOPEN
license file

>0 open

3.3 Check
activation

WS is
activated

Testing in the Real World 79

Steps are serially numbered so that the branch level can be immediately

identified, even in longer tables. In Step 3 of the figure, the program

branches out to the activity “Open license file,” which is described in its

own activity diagram. The subsequent steps (Steps 3.1, 3.2, etc.) are

atomic activities within the “Open license file” sub-activity.

In Step 3.2, a function is invoked from one of the DLL files used to run

the encryption system. The results of this invocation are then recorded in

the attribute fields “nHandle” and “License file status.”

If you want to test an activity flowchart in this manner, it is best to create

a unique field for each object or attribute whose condition is to be

tabulated in the walkthrough. This is where every change in value

resulting from an activity should be recorded. At the end of the

walkthrough, all objects and attributes should match the predefined

description of a correct result.

Testing designA program model walkthrough allows the designer to check the design’s

validity. Acting out processes using scenarios and activity or sequence

diagrams is always advisable for cases where relationships are not

straightforward. Here are a few more tips on using models for quality

assurance:

� Use models for important program aspects. Mandatory use of models

makes little sense. If you want to use models as technical

documentation for your program, the source code should be able to

produce the models automatically.

� Models are abstractions. Do not attempt to reproduce every single

detail in the model. Concentrate on the essentials. Specify only the

attributes, methods, and links that are important for the activity

depicted.

� Using the model, check your own understanding of each task and its

solution. The need to flesh out ideas on paper textually or graphically

often helps indicate weak points in the concept or where something is

not one hundred percent understood.

80 Developing and Testing

� Do not lose sight of the big picture. Any good diagram fits on a single

physical page. If your diagram runs over, combine the interrelated

areas into sub-diagrams, minimize details, or rethink the program

architecture being displayed.

� Use the communication possibilities afforded by models. All

development team members should at least have a basic mastery of

Unified Modeling Language (UML). UML allows ideas, analyses, and

concepts to be easily incorporated into an ongoing review process.

Everything
that helps

One key characteristic of the method described above is that none of the

steps are mandatory. Thus, the development of the licensing module did

not involve preparation of every possible document, model, or diagram,

but rather only those that proved helpful in a particular situation. By

helpful, we mean facilitating a broader understanding of the task at hand

or providing means of communication or testing.

The two methods that follow were not applied in the licensing module.

Business model

For task analysis, it is important to understand the commercial

environment of the software in production. The program must fit into this

environment and add value, for an improved environment produces

better data for processing. The best way to test your own understanding

of the commercial environment is to produce a business model that

furnishes the necessary explanations and present it to the customer for

evaluation.

In our licensing module case, a business model would not have been

much help. That is why we need an example from another project (see

figure 3.6).

Checking analyses Business models are produced as entity-relationship diagrams or as class

diagrams without methods. Core data from previous analysis discussions

should already have been assigned as attributes to entities (classes). Thus,

the customer can recognize whether you have correctly understood the

origin and meaning of the information occurring in the commercial

environment. Since in most cases diagrams mean nothing to the

customer, an explanatory text is both sensible and necessary.

Testing in the Real World 8 1

Example of a Business Model

...

Payment Reminders

Reminder statement

Reminder statements are generated based on payments which are overdue and not

yet paid. The billed amount becomes the accounts receivable balance.

Reminder statement

The reminder statement to be used is determined based on the dunning level and the

language ID set for correspondence with that particular customer. The current dunning

level is recorded in the payment total.

Figure 3.6 Excerpt from a business model with comments

Of all of the models, business models have the longest shelf life. If

significant changes occur in the commercial environment, you will most

likely need to change the program as well. Creating and maintaining a

business model is always useful if the commercial environment exerts

significant influence on the processes of a program.

Providing details on use cases

Providing detailed descriptions of use cases using a GUI prototype is

another method for checking your own understanding, for discovering

potential problems early on, or for sharing your thoughts with others or

submitting them to testing. Here is another example that does not come

from the licensing module.

Complex procedures are best outlined in activity flowcharts or sequence

diagrams, and are best checked with scenario walkthroughs (see above).

Customer account
Customer number
Send reminder statement yes/no
Correspondence in : Language

Language Payment reminder form
Dunning level
Language

Reminder statement
Date

Payment
Seq. number
Ref. : Indicator
Time limits : Months
Date due
Amount
Reminder level
Balanced yes/no

+ Amount due

82 Developing and Testing

Complex interfaces are best depicted in a detailed GUI prototype. The

best way to check the logic of the interface and the efficiency of the

workflow it controls is to describe all inputs, mouse clicks, and program

responses in detail. The best place for such a detailed description of the

GUI prototype is the use case’s textual description. Since it is no secret

that the devil is in the details, providing details on the use cases brings

you a step closer to all the ifs, ands and buts of the development work to

come. To be sure, you haven't yet had to grapple with coded legacies.

Here, you can still change everything without a lot of effort by adapting

the GUI prototype as you acquire new knowledge.

Figure 3.7 Screen form from the GUI prototype

Checking
procedures

Like the scenario walkthrough, providing detail on more important or

difficult use cases is one possible form of testing within the development

process. This type of test can be conducted long before the application

under test actually exists. You can already use some of the test models

described below when describing possible inputs and the program

responses they produce. For example, you can focus on lowest and

highest possible inputs, required fields, optional inputs, and so on. This

way, you get a much clearer picture of the required program functions

than you would solely from the use case analysis.

Testing in the Real World 8 3

Outstanding, Payment, Balance
The outstanding amount on the invoice, the assigned payment amount and the remaining amount
are displayed in the currency selected for transactions (see “Settings”).
Payment
When an invoice is selected from the list, the invoice’s data is displayed in the editing window below
the list. All the fields are write-protected except for the “Payment” field. Here, the amount can be
entered that has been assigned to the invoice as payment.
“Balanced” check box
This check box is automatically activated when the payment amount assigned to the invoice
balances the outstanding amount completely and/or within the set tolerance (the tolerance setting
can be found under “Settings,” “Transactions”). Users can also activate the control box manually
when no reminders are to be sent concerning the outstanding amount on the invoice.
“Assign” Button
Assigns the amount displayed in the “Payment” field to the invoice selected.
“Assign Automatically” Button
When the “Assign Automatically” button is clicked, the payment amount assigned is automatically
assigned to those customer invoices that have not been settled. Assignment takes place according
to invoice numbers in ascending order, meaning the invoice with the lowest number is settled first.
“Undo Assignments” Button
Undoes all assignments that have already been made. This function can be used to cancel a
payment amount that has been incorrectly assigned.
Save Payment
The payment and the assignments shown can be saved by clicking the “Save” button on the
toolbar.
Cancelling the Payments Entered
If the “Cancel” button on the toolbar is clicked, the payments entered and the assignments
displayed are cancelled without being saved. Once the data has been saved, it is no longer
possible to cancel the entries. However, a saved payment and its assignments can be deleted at
any time.

Figure 3.8 Detailed description of a use case in the text document

Involving users
early on

By creating detailed descriptions of program sequences for individual test

cases, you have simultaneously drafted the most important (or most

difficult) parts of the user manual. The idea of creating the user’s guide

before creating the program is certainly not new. If you provide users

with the de facto user’s guide together with the GUI prototype, you give

them a chance to get to know the program’s most important interfaces—

the user interfaces. They can "get it" and then give feedback.

The first units

Once you have described tasks, developed concepts for solutions,

clarified use cases, and set the most important parts of the interface, the

hard part is already behind you. Now, you “only” need to program the

functions that can be invoked by the interface and all the invisible little

helpers that work away behind the scenes.

84 Risk assessment

Top-down
approach

The top-down approach described here begins with analysis, proceeds to

the GUI and then focuses on functions invoked by the interface. I am

certain that the approach taken in this test case is not suitable for all task

groupings. I have previously found this approach very helpful for avoiding

serious errors in analysis or in design, or for discovering them in a timely

manner.

Before we tackle the big topic of unit testing below, I would like to touch

on two further preliminary aspects: risk assessment and patterns in

debugging.

3.2 Risk assessment

Risks were already mentioned in the use case. Testing deals with risks in

many places. Certain aspects of a program may be so important to the

customer that messy programming would pose quite a risk in these areas.

A program must be safeguarded against quirks in the technical

environment such as communication routes posing specific problems.

Errors that emerge in truly unproblematic areas can provide important

clues to risks which have not yet been recognized. The selection of

program segments to be covered by regression testing is also a risk

assessment issue.

3.2.1 Setting Priorities

Except for very trivial programs, it is no longer possible to test a program

completely. The issue is not just cost or the limited time allowed by the

project plan. The number of possible paths and input combinations in an

event-driven program with a graphic interface is simply too great. Even

with the best will in the world, nobody could check the billions of

possible combinations.

Priorities must therefore be set. But how does one procede? Which

criteria should be used to set the right priorities? Setting priorities always

means assigning importance to things. The most important test cases

should always be checked, and the less important ones as thoroughly as

possible. Unimportant test cases are never checked. But what is an

important case? Does everybody use the same criteria, or are different

approaches used within the project team?

Testing in the Real World 8 5

Identifying risksRapid Application Testing is risk-oriented testing. The program segments

that pose the highest risk should be checked most intensively. First of all,

the risks that particular program segments or constellations of hardware

or software may harbor must be identified, particularly when it comes to

requirements and use cases needed. We will also need a method that

enables us to sort and evaluate the risks we find. Our goal is to assign

testing priorities in a transparent, testable way.

It is certainly not equally important on all projects to perform a formal risk

assessment. Often, one has a “gut feeling” about what must be done and

where the greatest risks lurk. However, testers or QA officers should

know about and have experience with formal methods, at least in order

to hone their sense of possible risks and corresponding testing priorities.

3.2.2 Various Risk Types

Before we begin evaluating risks, we need to be clear about the types of

risks that exist. Risks can take various shapes:

1. Contract risks

� Contractual partners can interpret ambiguous and unclear task

descriptions differently.

� Unrealistic timeframes can cause the entire project to fail.

� Misunderstood requirements can lead to a conflict with the

customer.

� Leaving a requirement unfulfilled can also lead to a contract penalty

or even a lawsuit.

2. User satisfaction

� When a functional property is missing or faulty, this could

significantly disrupt the prospective user’s workflow.

� Inadequate usability or a departure from the system environment’s

informal user standards can cause the user to reject the program.

� Confusing error messages and a missing or inadequate Online Help

function can lead to user frustration and can ruin the program’s

reputation among users.

86 Risk assessment

3. Image risks

� An obsolete interface can have harmful effects on the customer’s

and on the software vendor’s image.

� Outdated program architecture can damage the reputation of a

vendor or a project team, at least in the eyes of the customer's IT

specialists.

� Failure to comply with implicit requirements can damage your

image (see the section “What is Software Quality?” on page 25), and

potentially lead to a conflict with the customer.

4. Complexity risks

� A calculation can be so complex that the risk of error is great.

� A multitude of rules can lead to a lack of clarity and make it difficult

to see through the program's behavior.

� Parameterization can make installation, support, and maintenance

more complex.

5. Integration and configuration risks

� The interaction between multiple components can create interface

problems and cause configuration errors.

� The impact of disparate hardware resources and operating systems

can also cause problems.

6. I/O risks

� Input data may be unreliable.

� The input and output channels (printer, E-mail server, network

connection) may be intermittently unavailable or prove unstable.

7. Time and synchronization risks

� Some workflows may have to be completed within a certain period

of time.

� Different areas of the program may have to be activated separately.

� Access to common data by multiple users must be secure and

synchronized.

Testing in the Real World 8 7

8. Quantity risks

� Certain data can accumulate in very large quantities.

� Procedures must be executable within a certain timeframe (i.e., the

workday) at a pre-defined rate (i.e., per unit of material).

� There are times during the day when many users access the

program. During these periods, system response times must remain

acceptable.

9. Security risks

� Certain data may only be accessed or modified by authorized users.

� Hostile attacks on the system must be anticipated.

Project-specific
risks

This list is certainly incomplete. When you assess the risk of your current

project, you will probably have to add specific risks. But the list does

make clear that we must distinguish between acceptance and technical

risk. Acceptance risks are primarily contract risks, risks related to usability

and image risks.

3.2.3 Risk Assessment Based on User Priorities

This approach may be used when establishing testing priorities based on

user acceptance risk. A comprehensive presentation of this method can

be found in [McGregor et. al., 2000]. The authors assume that users will

be more disturbed by errors in frequently used functions than by errors in

lesser used functions. Thus, frequency of use should be factored into

testing priorities along with the combined degree of user acceptance risk.

Frequency of useTo do this we need information about the prospective users and the

program features they would use most. We can get this information from

the use case analysis. This document lists all prospective users (actors)

and the program features they will use (use cases). Usually, the textual

descriptions of the use cases also provide information on frequency of

use. However, they frequently fail to indicate what influence an individual

use case might have on user satisfaction and contract compliance. If no

information is available anywhere (for example, in the functionality

specifications), we will have to make do with estimates.

88 Risk assessment

Consistent scale Both the frequency of use and the risk of acceptance (user satisfaction,

contract risk) will be graded using a scale. We will use the same scale later

on in the second step to establish priorities for testing technical risks. The

scales that we use to measure the degree of frequency and risk, as well as

the resulting levels of priority, should all have the same granularity. The

following six-point scale has proven useful:

Using a scale with fewer levels often produces imprecise test priorities.

The addition of more categories makes classification more difficult

without adding much significance.

In the example below, the program has been divided into very broad

functions: Data collection, user administration, data backup, and reports

are more like function modules than individual use cases. However, it still

makes sense to establish testing priorities at this level. High-priority

function modules can be divided still further into individual use cases as

needed. To keep things simple, we will stay at the higher level.

First, the users and the program features they use are summarized in a

table indicating the degree of frequency. The degree of frequency is

assigned a number from the six-point scale above; this indicates how

often a given feature or feature module is executed by each individual

user group (or role).

Level Frequency Risk Priority

0 Never Not available None

1 Seldom Very low Very low

2 Seldom Low Low

3 Sometimes Medium risk Medium

4 Frequently High High

5 Very frequently Very high Very high

Table 3.1 Six-point scale for frequency, risk, priority

Testing in the Real World 8 9

To make the information in the table clearer, here is a summary.

� Operator

Operators will collect data very frequently and sometimes generate

reports. Operators will very rarely use administrative functions, i.e.

only to change their password or user profile. Only in exceptional cases

will operators also complete a data backup.

� Administrator

Administrators never come into contact with data collection or

reporting features (at least not in their role as administrator). They

seldom access user administration, for example to add or delete a new

user account. Data backups occur frequently, that is, twice a day.

� Management

A management level employee frequently generates reports, but is

seldom involved in data collection and completes user administration

tasks or carries out backups only in exceptional cases.

� Executive management

The data collection and report features could both be accessed by

executive management, but direct involvement occurs only seldom if

ever. Executive management are never involved in user administration

or data backup.

Determining
average scores

The second step is the determination of average degrees of frequency for

each program feature and the degree of risk in relation to user acceptance

risks. The average of these two figures allows you to prioritize test cases

based on acceptance risks. All average scores are rounded up to the

closest half unit.

Function
User

Data collection User
administration

Data backup Reports

Operator 5 1 1 3

Administrator 0 2 5 0

Management 2 1 1 5

Executive
management

1 0 0 2

Table 3.2 Frequency of program use

9 0 Risk assessment

In this risk assessment step, all user acceptance risks are combined into a

general valuation of risk. But that is also this method’s Achilles heel. If no

explicit individual risks for software acceptance can be determined, or if

the individual risks are in general not very great, a combined degree of

risk could adequately represent all user acceptance risks. But if the user

acceptance risk for a function module is "very high," as is the case for

reporting in our example, it would be worth knowing more precisely

where the risk lies in order to concentrate on this point during testing.

It is also doubtful whether the feature’s frequency of use plays any

significant role when the risk is "high" or "very high." For example, an

annual financial statement must still add up, even though it is produced

only once a year.

Individual
assessment

When individual user acceptance risks can be identified, or when the user

acceptance risk in individual cases is above average, it is advisable to

conduct an individual assessment of the applicable degree of risk.

3.2.4 Function/risk matrix

We always conduct individual assessments of technical risks. It is

important to use the same functional categories as were used in assessing

user acceptance risks. In functional testing, we incorporate the testing

priority established by user assessment testing as an individual risk called

“Acceptance.” We should also stick to the established six-point scale to

Function
User

Data
collection

User
administration

Data backup Reports

Operator 5 1 1 3

Administrator 0 2 4 0

Management 2 1 1 5

Executive
management

1 0 0 2

Average 2 1 2 3

Degree of risk 3 1 2 5

Testing priority
(acceptance)

3 1 2 4

Table 3.3 Average frequency and degree of risk

Testing in the Real World 9 1

make sure the risk assessments are comparable. We record the

assessment results in a function/risk matrix.

To decide which risk groups belong in the matrix, we first assess all

possible risks. It is always best to start with a matrix that specifies all the

risks that come to mind. If a couple of risk types produce an entire row

full of 0s and 1s, these can always be deleted from the matrix later.

Since we are estimating degrees of risk as an exercise in order to identify

the most important test cases, it does not make much sense to calculate

averages at this point. Using the matrix, we simply observe that we

should test the reporting module most intensively, and in particular the

security aspect the risk of users gaining unauthorized access to reporting

data. The same risk (level 5) applies to security of user administration. If a

user manages to manipulate his access rights using administrative

functions, then obviously reporting data is also no longer secure.

Test results
influence risk
assessment

Risk assessment provides an initial approximation of what we need to

concentrate on during testing. But keep in mind that the test results also

bias the risk assessment. In extreme cases, a single test result can mess up

the entire risk assessment. This happens when an unsuspected error

reveals that we have underestimated an entire risk type.

Function
User

Data collection User
administration

Data backup Reports

Algorithm 1 1 2 4

Integration 2 2 2 3

I/O 2 1 3 1

Performance 3 1 2 4

Workflow 3 1 1 1

Security 2 5 2 5

Acceptance 3 1 2 4

Table 3.4 Function/risk matrix

9 2 Testing Patterns, Patterns for Debugging

3.3 Testing Patterns, Patterns for Debugging
Informative test

cases
The risk assessment results indicate what we should test first. But how we

approach the tests is still unclear. What we need are ideas on individual,

concrete test cases. Regardless of the test item, there are some models

that frequently produce informative test cases. Several authors propose

and discuss models for test case selection or test implementation. Delano

and Rising present general models for system testing [Delano and Rising,

2002]; Binder devotes an entire chapter to patterns in his comprehensive

volume on testing object-oriented systems [Binder, 2000]. Bret

Pettichord’s testing hotlist [Hotlist] includes numerous articles containing

models for test design and implementation, as well as best practices, tips

and tricks.

3.3.1 Best, Minimal, Maximal and Error Case

A useful model for finding concrete test cases is the specification of each

� Best case

� Minimal case

� Maximal case

� Error case

test item or test scenario.

Best case

Best case first “Best Case” is the case in which all of the conditions needed to run the

program apply, and in which all parameter values are available and valid.

All other conditions (such as open files) are also met. Conditions are

normal—no stress—life is good. Your function should work without a

hitch and return the proper results. Always check the best case first,

because it does not make much sense to tackle other cases when even

the best case does not work.

Minimal case

What happens if... In the "minimal case," you are checking your program's minimum

conditions. When calling a function, specify only the parameters that are

absolutely necessary and leave out all others. Choose minimal values for

Testing in the Real World 9 3

parameters that must be passed. For example, if your function expects a

date value that is not limited in the past, try entering January 1 of the year

1! If that is nonsensical, it is worth considering whether this parameter

should in fact be restricted in your function’s interface description.

All required files should also be closed in the minimal case. That is, unless

the interface description for the function explicitly specifies that certain

files are expected to be open.

The questions that generate "minimal case" test cases for application

analysis and design usually sound like this: »What happens when that isn't

there?” What should the program do when data is missing? What are the

default values?

Maximal case

The maximal case executes the program to be tested with maximal values.

These values can be parameter values, records in database tables, file

sizes, string lengths, and many others. In our date example above, the

maximum value would be December 31 of the year 9999 (which raises

the next millennium10 problem). Maximal case usually finds fewer and

less important errors than minimal case.

Error case

In error case testing, tests are conducted with missing or invalid values, or

under invalid circumstances. Crucial parameters are omitted, or more

parameters are passed than the function expects (if at all possible).

Parameters of the wrong data type are passed (if permitted in the

programming language) or parameters that contain invalid values.

Required files are not found, access to required drives is denied, and so

on.

Imagination
wanted

Testers really get to use their imagination in error case testing.

Experienced developers have an easier time because they have already

made many mistakes themselves. They can tap that store of experience

and try to imagine the kinds of errors that might have slipped past the

developers of the program under test. This method is known as “error

guessing.” Error guessing is a completely legitimate tool for assembling

test cases.

9 4 Testing Patterns, Patterns for Debugging

3.3.2 Equivalence classes

Analysis of
input data

Test cases can also be found by examining input data. Input data is

subdivided into so-called equivalent classes (equivalent partitioning). An

equivalence class is a set of values for which is posited that any value in

the set will invoke the same program behavior and thus expose the same

errors. For example, take a function which is expecting one or more

words as input values. If the function is expected to handle all words and

recognize them in context, without any errors, then we have a quantity

problem.

Words can be combinations of any of the 26 letters in the alphabet. In

addition to letters, there are other characters used to abbreviate,

punctuate, or combine words (among other things), all of which must be

interpreted. It is clearly way beyond the scope of a test project to test all

the combinations of letters. After completing an equivalence class

analysis, it is probably also unnecessary. After analyzing the program, one

can categorize the input characters at issue into the following equivalence

classes:

� Letter (A to Z, a to z)

� Punctuation marks and special characters (comma, semicolon,

hyphens, etc.)

� Apostrophe and hyphen characters

� Numbers (0 to 9)

� Control codes (ESC, CR, LF, etc.)

This method limits testing to combinations that represent an equivalence

class, rather than an endless series of combinations. If you want to test

how the program responds to a shortened or compound word, it is

therefore sufficient to combine any string of letters with an apostrophe or

dash. According to our equivalence class analysis, it is immaterial which

letters are used or whether words contain an apostrophe or a hyphen.

Pay attention to
the source code

An equivalence class analysis can only be completed by examining the

source code underlying the function. That is the one and only way to find

out whether an apostrophe and hyphen are equivalent input values, or

whether the two are handled in two different branches of a CASE

Testing in the Real World 9 5

statement which can lead to differing results. This makes equivalence

class analysis a classic example of the Gray Box testing approach. The

interface is tested based on public interface inputs, but the required test

cases are generated based on knowledge of internal structures. In this

approach, of course, there is always the danger that test cases will no

longer fit if the internal structure changes. When documenting test cases

generated through equivalence class analysis, you should make a note of

this. That way test cases can be checked if the program is modified.

3.3.3 Boundary Values

Boundaries are
laden with errors

One further method for determining relevant input values is boundary-

value analysis. Experience has shown that errors frequently occur when a

program processes boundary values. In boundary-value analysis, one

selects the following critical input values:

� A value just below the lower boundary value

� The lower boundary value itself

� A value just above the lower boundary value

� A value just below the upper boundary value

� The upper boundary value itself and

� A value just above the upper boundary value

and generates the required test cases. Here is a classic example of a

boundary-value test case: salary tax brackets. If reported income of

50,000 is taxed at 20%, and at 15% below that level, while a reported

income of 100,000 or above is taxed at 30%, then the boundary values

matching this breakdown are:

� 49,999

� 50,000

� 50,001

� 99,999

� 100,000

� 100,001

9 6 Testing Patterns, Patterns for Debugging

This example also clearly illustrates why boundary-value analysis

frequently does not generate fixed values for test cases. The boundaries

for the income tax brackets are in all probability stored in parameter

tables and written into the program code. Changes to these program

parameters will also change the boundary values required for the test

cases. This must be considered during boundary-value analysis.

3.3.4 Cause and Effect Diagrams, Decision Trees

Cause and effect diagrams convert specifications into graphics which

depict the nodes that indicate cause and effect in the specification. The

lines running between the nodes illustrate the cause and effect

relationships. This diagram is later converted into a decision tree.

Analyzing complex
specifications

The point of this approach is to subject complex specifications to

systematic analysis in order to determine which test cases cover all

requirements and specifications. For complex specifications, it is pretty

hard even to produce a cause and effect diagram. It is also easy to make

mistakes. Because those of us who design tests do not want to

unnecessarily add errors, we do without cause and effect diagrams.

However, the decision trees derived from them can be put to good use.

If the values A0 to A9 and B0 to B9 are allowed in a two-digit input field,

the field validation rules can be illustrated using the following decision

tree:

Rule
Condition
Activity

1 2 3 4 5 6

Character1 = A 0 0 0 1 0 1

Character1 = B 0 0 1 0 1 0

Character2 = digit 0 1 0 0 1 1

Accept field - - - - X X

Error message 1 X X - - - -

Error message 2 X - X X - -

Table 3.5 Decision tree with system responses

Testing in the Real World 9 7

This decision tree tells us that we have to create six test cases and gives us

expected outcomes.

Decision trees are well-suited for the review of more complex relations in

the application specification. System responses should be clearly defined

for each combination of conditions in the decision tree.

Incidentally:

If, after consulting the source code, we notice that when characters A and

B are in the first position, they are treated in the same way and thus form

an equivalence class, this reduces the number of required test cases to

four.

3.4 Unit testing

Now we turn to unit testing. Unit testing is primarily carried out by

developers themselves. Therefore, when discussing possible test cases for

unit testing, I assume that you are the developer of the unit under test.

Unit testing is concerned with functional correctness and completeness

of individual program units, e.g. of functions, procedures or class

methods, and classes or system components. Units can be of any size.

They are continually produced in the course of a project, meaning that

completed, discrete program segments will usually be available for unit

testing. In the IT environment of some organizations, a completed

program is also a unit.

Rule
Condition
Activity

1 2 3 4

Character1 = A or B 0 0 1 1

Character2 = digit 0 1 0 1

Accept field - - - X

Error message 1 X X - -

Error message 2 X - X -

Table 3.6 Decision tree after an equivalence class analysis

98 Unit testing

Unit requirements Unit testing is not a project phase. It is a perspective from which to

evaluate and test software components. Unit testing is concerned with

the unit requirements. It does not deal with how units interact that is an

integration testing issue. Nor does it check how the unit is imbedded in

the system environment or how it interacts with the system this is the

province of system testing.

3.4.1 Functional testing

Unit testing cases cover the functional correctness and completeness of

the unit as well as proper error handling, testing of input values (passing

parameters), correctness of output data (return values) and component

performance.

These types of tests fall into the category of Gray Box testing, meaning

they cover unit functionality (the “black” aspect). However, in order to

locate and assess the test cases, source code may be accessed (the

“white” aspect).

Functions

Identifying
influence factors

Functions provide a return value. Therefore, they are the easiest to cover

in unit testing. The test cases derive from the combination of all input

parameters. Input parameters include anything that has an impact on the

output of a function. This means parameters that are passed when the

function is called, but also factors such as system settings (date format,

decimal separator, user rights, etc.). When devising useful test cases, start

by tracking down all these influence factors.

In principle, we could calculate the expected result for any combination

of input parameters. The return value of a function with a given

combination of input parameters is the actual function output and this

should match the expected output.

Volume problem Difficulties which crop up in real projects are almost always related to an

excessive number of potential input parameter combinations. Testing

approaches discussed above such as equivalent partitioning and

boundary value analysis, as well as the teaming approach discussed below

in the section “Test Coverage” on page 130, all attempt to deal with these

issues.

Testing in the Real World 9 9

Any quick initial test of a function would definitely include the best case.

Find out the minimum or maximum values of certain input parameters

and ask yourself whether they could lead to problems. If you encounter a

critical situation when considering the respective minimal or maximal

case check it. This does not always need to take the form of a test. One

look at the code will often tell you that something cannot possibly work.

The most important thing is to hit upon the idea of examining the source

code with this particular question in mind. Thinking in terms of minimal

and maximal cases helps.

The proof of the
pudding is in the
eating

Also make sure that the function responds in a stable manner to error

conditions. The rule of thumb here is: If it isn’t obvious, it is worth

checking. “Obviously” should mean just that. If a particular function

behavior is not immediately clear from the source code, when you have

to rack your brains about a function will behave in a fairly complex

situation, it is always safer to test this behavior than it is to dream up a

solution.

The best tool for this is a source code debugger. If you observe how the

computer proceeds through a function step by step, periodically checking

the values for local variables and executing branches, you will usually get

a different perspective on the function than if you examine the source

text in an editor.

Procedures

Procedures do not return a value, they do something. They change the

underlying system data, send signals to other units which in turn trigger

other events, or output data to a screen or printer, to name but a few

examples.

Knowledge of
procedure effects

Test cases for procedures generally have more complex expected

outcomes than do functional test cases. As is the case with functions, test

cases for procedures derive from input parameters. The expected outcome

for a test case comprises all the effects of a procedure call with current

input values. Thus a procedure named “PrintConsolidatedInvoice” can just

as easily produce a pile of printouts as a series of data records with a date

set to "ConsolidatedInvoicePrintedOn." When choosing test cases for

procedures, just like with functions, you should determine all factors

10 0 Unit testing

which may have an impact on the procedure. However, you must also be

aware of all the procedure's effects.

Direct data access If you want to compare the actual outcome and the expected outcome of

a procedure, you need the technical capability to capture and analyze its

intended effects. In order to find errors, you must at least have the

capability to capture unintended effects. This all sounds rather expensive,

but in practice it often means that you just need direct access to the

application’s system data.

How thoroughly the procedure outcomes should be tested is another

question altogether. Does each and every consolidated invoice record

require a check for the “PrintConsolidatedInvoice” procedure? In other

words, do all items have to be totaled and the result compared with the

net sum? Do VAT and gross sums have to be calculated and checked for

each consolidated invoice? As is often true, the answer is a simple: “It

depends.”

Keep an eye on
specific tasks

Each procedure should be checked to see if it completes its intended

task. The “PrintConsolidatedInvoice” procedure’s task is to create a

summary of trade accounts receivable for a given period and to invoice

these. Testing should focus on whether time periods are correctly

processed, whether transitions between months and years (leap years)

are handled correctly, whether previously billed periods are carried over

properly, and so on. Other critical situations could occur if a customer

receives goods or services on the exact cut-off date for consolidated

invoicing; if the customer is entered into the system for the first time on

or just prior to the cut-off date; or if deliveries straddle a period cut-off

date. These are all scenarios related to consolidated invoicing and have

less to do with invoicing.

Architecture
determines test

cases

The program probably also lets the user print out single invoices. When

testing the generation of a single invoice, one should check all computing

operations and other algorithms that apply to each and every invoice.

Correct generation and output of consolidated invoices should be a

function of correct generation and output of single invoices. I said

“should” on purpose! Because the validity of this assumption is

completely dependent on the application architecture. This is a further

example of the importance of Gray Box testing in Rapid Application

Testing in the Real World 1 01

Testing. If you cannot confirm your assumption by examining the

program or talking with the developers, you can only guess that the

consolidated invoice will be calculated correctly. It should be checked for

accuracy in any case.

Component
architecture
reduces testing
effort

This example also shows that the application architecture has a decisive

effect on the quality of the application and the effort required to

complete testing. In particular, the component architecture reduces the

testing paths needed to cover programs to the point where testing of

component interfaces can be considered complete.

Methods

Methods are also classified as functions or procedures; effective input

parameters and intended effects must also be identified when picking test

cases for class methods. In contrast to “free” functions and procedures,

methods are provided for objects at run time when objects have a status

attached.

Focus on the
status of an object

The current status of the object containing the method is also always

included among the input parameters of a method call. The status or state

of an object is determined by the values of the object’s internal variables.

The values of these variables may be changed at each method call. The

order in which the calls are made thus plays a role. However, the risk of

an unintentional method call sequence is only relevant if the class

contained in the method's source code has been released for use by other

developers. As long as a class is used only by you or your core project

team, you (the developer) can point out that certain things just aren't

done—for example, calling a method at an inappropriate time.

Classes

If the release of a class involves unit testing of an entire class and not an

individual method, testing will focus on the public interface, i.e. the class

interface. Class testing is a form of Black Box testing. It checks the class

interface methods as opposed to directly checking internal methods. For

example, the interface methods must be callable in any order without any

problems. If the object under test is in a state which prevents any

meaningful execution of the method when called, the object must

10 2 Unit testing

demonstrate a controlled response such as invoking exception handling,

returning a bad value, and so on. The status of the object under test must

not be changed by this response.

Setting properties If the interface of the class includes properties, i.e. class attributes which

are accessed directly and not by using setXXX and getXXX methods, then

setting and retrieving these properties will lead to separate test cases.

Unlike allocating values, setting and extracting class attributes can cause

internal methods to be called that are attached to properties. Invoking

these methods may of course lead to a number of other errors. That is

why separate tests must be run on setting and retrieving properties.

Setting and extracting properties directly may tempt you to neglect the

changing status of the object under test. To bring this point home, here is

another short example from the area of trade receivables. In this example,

a planned delivery of goods should be considered open as soon as a

delivery note number is generated to enable the delivery.

Imagine that the delivery object includes a method called

“SetDeliveredStatus(<DeliveryNoteNo.>)” which expects the delivery

note number to be the call parameter. This will generate several test

cases. The best case is that the delivery object has the correct status when

called and that a valid delivery note number is passed. Minimal and

maximal cases can be derived from the format or value range of the

delivery note number. Error cases might involve situations where the

delivery object does not have a deliverable status or where the delivery

note number is wrong. All test cases derive from the purpose of the

method and test against the expected outcome or desired effect of calling

it. The danger of calling the method by accident or in the wrong context

is fairly slim. If the delivery note number for a “delivery” class object can

be directly set as a property, then developers have a lot more latitude.

However, the odds also increase that the property will be erroneously or

accidentally set somewhere in the program where it should not be.

Setting the
property for an

object will change
its status

In other words: If you (the developer) set a property directly yourself, you

have changed the status of that object. The risk here is that the change in

status is not currently allowed. Setting a property directly can only be

considered safe if an internal set method is attached to the property. The

Testing in the Real World 1 03

method validates the status change and possibly triggers any required

activities that may come next.

When considering this issue, keep in mind who will use the class. If you

(the developer) can look over the user's shoulder, many of the safeguards

are not required. However, they will be needed for inexperienced,

uninformed or even hostile users of your class. If you dispense with

safeguards, you also do away with the tests that check them.

Avoid global
values

Test cases for directly set (attribute/property) values are very difficult to

cover by using external test cases. If at all possible, avoid global values

which can be modified directly, such as global variables or structures or

values in open files or local tables. These values are in constant danger of

being inadvertently overwritten as a result of some action. Tests for such

unintended changes are best deployed as embedded tests (see the

section “Testing Strategies” on page 38). You can save yourself extra

coding work by leaving global values out of the program design.

Required resources

The costs of unit testing should depend on the unit's degree of risk.

However, subsequent use of the unit should also be considered. If you

have developed a function which you will use many times over in the

program, you may be able to do without an individual function test and

simply trust that subsequent use of the function will expose any errors. As

long as you are not required to release the function separately, it remains

in a sort of internal beta testing.

Unit testing
reduces
integration testing

Each unit (function, procedure, class, etc.) that you make available to

users should have gone through all functional beta case testing, as well as

minimal, maximal, and error case testing of direct input parameters. No

function is so unimportant that you can live without it. Functions that

return critical values and those you are not prepared to treat as buggy

should be subjected to comprehensive unit testing. As a general rule of

thumb, careful unit testing will cut down on the test cases required to

cover integration.

10 4 Unit testing

3.4.2 Structure testing

Source code validation

Source code validation, alluded to in our example test cases, is a

completely different aspect of unit testing. The necessary test cases are

derived from the source code structure and not from unit functionality.

These are strictly structure tests of the unit.

Errors only visible
at run-time

What does source code validation mean? Specifically in the case of

interpreted languages which are not highly typed, typing errors in variable

or function names may creep in that will not be discovered until run-

time. Bear in mind, however, that highly typed languages also include

expressions which use names that only become valid at run-time. This

happens for example when accessing database fields, external files, and

so on. Typographical mistakes may lurk in the names of external resources

(and paths to these resources) which are not noticed while coding. They

are only exposed when this part of the program is given a walkthrough.

Source code validation thus means ensuring that every line of code is

executed at least once during a test.

Structured basis testing

Structured basis testing is a relatively simple method for determining the

test cases needed to validate source code. In this methodology, the

source code structure is used to determine test cases. When generating

test cases, the objective is to use the function to determine all possible

source code branches.

Complete branch
coverage

The test cases must ensure that each branch is covered at least once. All

points at which the program’s control flow graph branches will produce

at least one new branch that does not form a part of the standard or ideal

path. Each new branch will require a new test case which covers precisely

this branch.

1. Best Case

The first test case is, as always, the best case, i.e. all tests made in the

function were passed and the ideal path has been covered in the

function.

Testing in the Real World 1 05

2. Conditions

Every condition in the function generates at least one additional test

case. This test case covers the situation when conditions deviate from

the ones found in the ideal condition path.

The same applies to FOR and WHILE loops. If one of these loops is

covered in the best case at least once, then another test case is required

for the variant which does not include the loop.

REPEAT ... UNTIL loops are always covered at least once. Where the

loop is only executed once, this is a special case. One should check

whether the loop can always be exited, in other words, whether the

UNTIL condition can always be accessed.

You should pay especially close attention to combined conditions.

When optimizing the compiler, it may happen that coverage of part of

a condition expression is lost because the outcome of the total

expression already exists. Here is a code example illustrating this:

Listing 3.1 Run-time errors caused by expression analysis

The code in listing 3.1 causes a run-time type mismatch error if “Alias”

is of type “C” and not empty. If your "best case" test case does not

expect “Alias” to be of type “C,” and in a variant test case the ELSE

branch "Alias" is of type "C" but empty, then the third part of the

expression will never be calculated. Either the first or the second part

has already returned a TRUE result. This causes the entire expression to

be returned as TRUE and therefore prevents further processing.

This is a frequent source of errors in programming languages that are

not strongly typed. But strongly typed languages may also produce a

run-time error with such a construct. All you have to do is picture a

database field being accessed whose name has been spelled wrong.

IF type("Alias") <> "C""

 or empty(Alias)

 or Alias = 1234

THEN

 ...

ELSE

 ...

ENDIF

10 6 Unit testing

3. CASE Constructs

In addition to the best-case CASE construct, a separate case must be

generated for each CASE branch. The same is true for instances of ELSE

and OTHERWISE, regardless of whether they are explicitly executed in

the source code or not. When a CASE condition is combined, then

watch out for potential optimization of the compiler.

Schematic
generation of

test cases

With structured basis test cases, you can be sure that all lines of source

code have been executed once. Creating structured basis test cases is

fairly easy because conditions that deviate from best case scenarios can

subsequently be recorded schematically for test case generation. We

should give a source code example of this.

...

with THIS

*--

* check parameter

*---

IF NOT(

 type("tnFlags") = "N"

 and (tnFlags = LF_CREATE_MISSING

 or tnFlags = LF_CREATE_NORMAL)

)

ERROR __OCF_ErrWrongParameter

RETURN .FALSE.

ENDIF

*--

* control file must be closed

*---

IF NOT(.nControlHandle = 0)

ERROR __OCF_ErrControlFileOpen

RETURN .FALSE.

ENDIF

Testing in the Real World 1 07

Listing 3.2 An example of a simple source code structure

For our best-case scenario, we set conditions that ensure that all

parameters and preconditions are okay and debugging is not executed in

the respective IF branches.

We therefore determine:

type("tnFlags") = "N"

tnFlags = LF_CREATE_MISSING

nControlHandle = 0

nHandle <> 0

These are the values for the first test case.

In order to enter the first IF branch, you have to cause the IF condition

to be true. The easiest way to do this is to ensure that type("tnFlags")

<> "N" apply. But since you want to evaluate the combined expression as

a whole, we decide that tnFlags have a value assigned, not equal to LF_

CREATE_MISSING and not equal to LF_CREATE_NORMAL. That is the

second test case.

The third test case is that the nControlHandle <equals> 0. This

ensures that the branch of the second IF statement is covered.

The fourth test case leaves the ideal path at the third IF statement by

setting the handle to nHandle = 0.

This process then carries on through the entire code structure ...

*--

* license file must be open already

*---

IF NOT(.nHandle <> 0)

ERROR __OCF_ErrLfClosed

RETURN .FALSE.

ENDIF

...

1 08 Integration Testing

Very high cost This example demonstrates where problems arise in structured basis

testing.

� The approach generates a large number of test cases.

� If conditions branch down to three or more levels, it becomes very

difficult to create the testing environment that covers a particular

branch.

� If a condition is based on the return value of a different function, this

function must be made to return exactly the value needed. The worst

case would be that the called function is replaced by a function stub

which returns the desired value during testing.

Complications of this kind cause testers to dispense with exhaustive

source code validation on many projects.

3.5 Integration Testing

If you are grouping several program units into a larger module, risks can

arise related to the arrangement itself. These issues are dealt with in

integration testing.

Integration testing is different from unit testing of the next larger program

unit. Integration testing is less concerned with what the new, combined

unit does than with whether the individual parts work together smoothly.

The interaction of the individual parts of a unit or subsystem pose larger

risks if the parts are physically separated, for example in different .exe and

.dll files. If parts of a system are combined in an executable file, interface

incompatibilities, missing files and other problems will appear

immediately. If the parts of the program are physically separated, the first

check of a component will be made only when it is called. The correct

component version is checked, as well as the match between the

interface and the function call, and so on.

3.5.1 Transactions

The functional correctness of transactions across multiple modules should

always be tested first. These represent the best cases in integration

testing. All components are present, correctly initialized and available. In

a typical 3-tier architecture, this consists of the interface, processing logic

Testing in the Real World 1 09

and data storage. Best case testing checks if use cases are correctly

handled across all three tiers.

Other constellations are also conceivable, such as program chains which

include: a form editor, an application which prepares data for printing,

and a printing program that merges the data with the forms and prints.

Maximal caseIn addition to best cases, it also makes sense to carry out maximal case

tests. These are tests which pass maximum values through all data

channels. Try entering maximum values in the input fields of the

application interface, for example. When entering numerical values, use

the maximum number of digits but vary the values. Here are useful

entries for fields with six places before the decimal point and two after:

1. 123456.78

2. 234567.89

3. 345678.90

and so on. Use them only to the extent that the program accepts these

values, of course. Having 999999.99 in all fields would exhaust the

maximum planned capacity this would certainly be a meaningful unit test

case if two of these values were multiplied together. But integration

testing is more concerned with interaction. In our example, the question

is whether all values are being passed through the various modules and

tiers correctly. It is vital that the input values at one end of the transaction

chain can be readily associated with output values at the other end. If you

had the same maximum values in all the inputs, you would not notice if

two values had been accidentally switched somewhere along the line.

Assuming the input does not exceed the required field length, we can

work with alphanumeric input data using the name of the data field and

a character that signifies the end of the field. Here is reasonable input

data of 40 characters in length for three address lines:

Address1------------------------------->

Address2------------------------------->

Address3------------------------------->

At the end of the processing chain, you can recognize whether all the

input data has the correct length in the correct field.

11 0 Integration Testing

Minimal case Minimal cases can also make sense for integration testing, but these deal

more with user-friendly behavior and minimal configuration than with

data loss.

One example of user-friendly program behavior would be that the

interface already “knows” what the application layer needs. Each time a

user enters information, or at the latest submits it, a plausibility check is

carried out automatically. If the user tries to enter or submit incomplete

or faulty information, he or she is immediately notified instead of

receiving an error message later from the server. Sometimes this level of

plausibility checking cannot be maintained for more complex validations

that also have to access the application’s data pool. But there are still

some Web sites that do not check simple required fields, which forces the

user to reenter an entire set of information after an error message from

the server. Here, minimal case test cases verify whether the obvious input

data required to begin a transaction chain is also sufficient to complete

processing.

Minimal
configuration

Another type of minimal test case checks whether the application can get

by with a minimum of installed components. For example, third-party

products may have been installed that are required to perform certain

functions, such as report generation, outputting graphics, compression

tools, e-mail clients, and the like. What happens when one of these

products is not installed? Could it be that the program does not even

start? Even though the user could work reasonably well without the

uninstalled components? Or does the program act as though everything is

just fine, and then crash when you click the right button? The anticipated

result of such a test would be that the program functions even without

the third party components, but that the functions dependent on these

components are clearly deactivated in the interface.

Error case When error-case testing is included in integration testing, it checks how

the program reacts when one of the components it always needs is

unavailable or faulty.

� Does the program check for the strictly required components when

started? When launched, the program probably cannot check whether

all required components function properly. However, it can certainly

Testing in the Real World 1 11

check whether the components are available and whether the

minimally required version is installed.

� Can transactions be properly cancelled if processing is interrupted at

some point along the chain? Or, if so intended, can a transaction be

resumed where it left off after the error has been fixed?

3.5.2 Linking to the Interface

A special kind of integration testing, which also makes sense for single-

layer applications, checks the interplay between menus, toolbars,

function keys and the program units they call.

� Are currently unusable menu items and toolbar buttons shaded in

gray?

� Is the widget’s display range sufficient to display all values?

� Are all error messages received during processing correctly passed on

to the interface? Does the user understand the message when it

appears?1

� By the same token, only the error messages meant for the user should

be passed along to the interface. The message “OLE Error Code

0x8000ffff: Unexpected Error.” means precious little to most users.

3.5.3 Synchronization

Further integration testing may be required to test how a particular

program segment responds to events in other program segments.

Multi-user
operation

For example, one segment could modify or delete data which is being

used by another segment or displayed in a list. Here, the anticipated

program behavior depends on the locking mechanism used. Pessimistic

table or record locking means no data can be edited as long as other

program segments are using the data. However, if the data is only being

displayed in a read-only list, the list should be updated once the data has

been modified. With optimistic locking, modifications can take place

even if the data is in use somewhere else. The question of whether or not

1 At the start of a well-known financial accounting software program, the message
“This is a duplicate check number. Are you sure?” appears without any
accompanying information.

11 2 Integration Testing

to update the data being used must be answered separately for each

individual case. Information in a voucher should not be changed after it is

created, otherwise the voucher is no longer a voucher. If a given

document must be recreated, however, it makes a lot of sense to pass

modifications such as address corrections.

Referential
integrity

Deleting data that is simultaneously being used elsewhere should be a

no-no. When using relational database systems, synchronization that

takes place during data deletion is most often governed by referential

integrity (RI) rules stored directly in the database. RI rules dictate what

should happen if a linked data set is modified or deleted. The rules can be

set to allow modifications to be passed along to linked sets or to prevent

modifications to the database if linked sets exist. The same is true for

deleting. Deleting a data set can also cause linked sets to be deleted as

well. For example, if header information in a voucher is deleted, in most

cases the line-item data will be automatically deleted as well. One

alternative would be to prevent the deletion of header information as

long as line item data is present.

The database design determines which RI rules apply. If RI rules are stored

in the database, they must also be tested. Here, we do not check whether

the database will adhere to its set rules. We can and do assume that the

relational databases now on the market will do this. More importantly,

the tests must ensure that all rules are set correctly and completely.

Synchronization
often affects

quality

Test cases for data synchronization, as well as data processing across

multiple program segments or layers, depend significantly on the

application’s design. At the same time, these questions are often not

addressed in the analysis because, after all, they are obvious to everyone.

If a customer record is deleted, the customer's outstanding items must

certainly also be deleted, right? Or is it better to prevent the deletion of

customers if outstanding items exist? Does that always work? Must the

user be able to override this?

As you can see in these simple examples, it is precisely questions of data

and process synchronization that often determine the perceived quality

of a program. If you are looking for test cases to analyze documents or

design decisions, or to test integration, pose these questions of

dependence and necessary synchronization to yourself or to others.

Testing in the Real World 1 13

3.6 System Testing

System tests deal with issues related to the complete system. Finding test

cases for system testing is easiest if you think of software as something in

a box that gets sold somewhere.

“Can the software do everything I need it to do? Is it compatible with my

hardware and operating system? How do I install it? How much space

does it use up on the hard drive? Can other users get access to my data?”

These are the questions that produce test cases for system testing. Of

course, the questions will not sound quite so casual or personal (you are

not comparing online banking tools). But the gist is about the same.

3.6.1 Functional completeness

What interests the customer most about the system as a whole? Whether

the program's (or add-on module's) functionality is actually there.

Therefore, the first system tests or checks should answer this question if

nothing else: “Have we thought of everything?” This question generates

the best-case test cases for system testing. If parts of the system or add-

on modules are missing, it is difficult to test the system as a whole.

Are the
requirements
satisfied?

How can we determine whether the system or the particular add-on

module functions as required? By using the requirements specification, of

course—assuming one exists and is up-to-date. If you have reliably

managed requirements and modifications all along, you can possibly skip

the testing for functional completeness. If not, you must find some other

way to detect the explicit and implicit requirements of your system.

Use Cases and Scenarios

The systems’ requirements can be derived from the description of use

cases and scenarios, if such a description exists. If no use cases and

scenario descriptions exist because, for example, the nature and scope of

the task analysis only became clear during development then it is

advisable to create a short, ad hoc description of use cases to prepare for

system testing. For one thing, you can use this description to check

whether every feature categorized as useful, or marked for

implementation, was actually built successfully. In addition, you can use

11 4 System Testing

this description as a starting point for regression testing of the next round

of program enhancements or modifications.

Implicit requirements

Correspondence, including e-mail, often contains implicit requirements

that one has agreed to implement during the course of the project. These

requirements tend to get lost. Discussion notes are also a rich source of

functionality ideas that somehow never quite get implemented. Search

through your inventories for such broken promises, at the latest during

system testing. This gives the customer confidence in your organization’s

reliability even if you did not quite manage to do everything that you

promised.

Menu items, buttons, check boxes

The program itself should also be fine-tuned for functional completeness.

Menu items that call nothing, buttons that do not react or are always

deactivated, and check boxes that do not noticeably affect program

behavior when selected, are all signs of missing functionality. Perhaps

something is not absent, but rather superfluous. These interface items

could be hold-overs from prototypes or call functions that will not exist

until the next release version.

User manual

The user manual must satisfy two general requirements. It should be a)

available and b) accurate. Therefore, checking the functional

completeness of an add-on module also includes checking the program

against the user manual. Is everything important covered? Has everything

described in the user manual actually been implemented?

Has everything been tested?

The correct implementation of requirements should be checked during

unit and integration testing. During system testing, you must ask whether

the requirements defined for your specific add-on module are

completely implemented. Here implementation means: Solutions for all

requirements have been programmed and tested! In this sense, system

testing also confirms the completeness of the functional tests.

Testing in the Real World 1 15

Software normally has points of contact with real life, and

“completeness” is very hard to achieve at these points. Use cases describe

a best case; executable alternatives or alternate scenarios describe cases

that diverge from the best case. The best case and each separate scenario

should (in theory) get an individual test case. However, with scenarios we

once again quickly encounter a volume problem. As long as you have no

reliable information about actual use, you must use your imagination and

your experience to figure out which scenarios are important and should

therefore be tested.

Describing use
cases in detail

In the case study at the beginning of this chapter, a use analysis was

conducted which GUI prototypes later fleshed out. If you have

completed these sorts of tasks, you have already contemplated

fundamental scenarios. You can now take advantage of all that by

checking whether these scenarios have yet been covered during testing.

If not, you can now make up for the missing tests during system testing.

3.6.2 Run-time Behavior

If the program should run on various operating systems, system testing

will obviously evaluate the software’s run-time behavior on these

systems. Normally, no new test cases will be needed for this. Instead,

appropriate unit, integration, and system tests are performed on all target

platforms. Which test cases these are depends on the influence factors for

the operating system (also see “Coverage of System Scenarios” on

page 141).

System versions

Program behavior does not only vary across operating systems which

belong to different system families such as Unix, Linux, Windows, DOS or

Mac OS. There are also serious differences between versions in a system

family. These can still have an effect on your program’s behavior, even if

you use a programming language that is supposed to protect you from

such version differences. This is largely due to the system components

that your program uses. Statements in your code might call the system

interface directly, constituting an explicit use. Or the use could be

implicit: The operating system interface is called from your language's

run-time system or the code produced by your compiler.

11 6 System Testing

Effects of the
operating system

In the event of explicit use of operating system interfaces, you can

determine which operating system components might be influencing

your program by inspecting your code. This is not so easy for implicit uses

of operating system interfaces from the run-time system or from

compiler-generated code. The run-time system version and the compiler

version are also important here, along with the OS version. Even the

compiler status that translated the run-time system can be a decisive

factor. For example, code produced by older compilers often cannot deal

with today’s standard processor speeds.

So far we have been discussing various OS versions, run-time systems or

compilers, and we do not mean program versions with varying version

numbers. Software vendors and development tools do not increase the

version number with each modification. The deciding factor is always the

number of the so-called “build.” Builds can be performed as often as

several times a day. One of these builds then makes it onto the next CD

or into the next service pack. By contrast, new version numbers are set by

the marketing department in cycles.

Keep smoke tests
in reserve

By making only controlled upgrades and installing service packs only

when needed, you gain some protection against modifications in the

development environment. In most cases you cannot do anything about

a customer’s chaotic operating system environment. Therefore, you

should compile a series of smoke tests that you can perform on each new

operating system version as needed. These smoke tests should cover the

basic functionality of your software. Accordingly, they do not discover

involved problems with a specific OS state, but they do indicate whether

the software’s basic features function correctly.

Hardware resources

Hardware may also have an effect and must be checked during system

testing. The user manual for your software might provide instructions on

the minimal configuration required. Check these instructions at least with

each major upgrade.

Drivers Drivers fill the gap between hardware and operating systems. When

errors occur that cannot be reproduced, the drivers used should be

examined more closely. Drivers are always of interest in system testing if

Testing in the Real World 1 17

your program communicates with a hardware component more

intensively than required for normal use. For example, the driver can

have a decisive effect if communication protocols are used, if status

information is called, or if outputs must be precisely positioned.

Timing problems

The ever-increasing speed of today’s computers can lead to timing

problems. If your program uses timer objects, needs wait cycles, or even

uses its own timeout control system with “FOR” loops, you should

conduct system tests on the fastest computers available. Timeouts which

were adequate in the past may very well no longer work for the newest

computers.

3.6.3 Installation

Test cases that evaluate installability and configurability should also be

included in system testing. When conducting installation tests, it is

important to use a testing system unrelated to the system under

development. That is the only way to ensure that the development

environment does not exert any influence on the installation process.

Minimal system
requirements

Test the best case here as well using a properly configured “bare bones”

target machine. “Bare bones” means that no other software is installed

besides the operating system. If absent, all components required by the

program should be automatically installed during installation. Testing can

only be done reliably if the target machine has had a clean install with

minimum system requirements. The best case here is also the minimal

case.

Conflicting components

Sometimes the installation best case is the one that never occurs in the

real world. "Out there" installation conditions can be quite the opposite:

chaotic, or even disastrous. Though rare, it does happen that two

programs from different vendors cannot be installed at the same time.

This is most likely to happen when both vendors use the same

components from the development system or the same software from

third-party vendors but in different release versions. Unfortunately, not

1 18 System Testing

all of these components are upwardly compatible. It is also unfortunate

that the installation check in the operating system sometimes does not

function correctly with component versions. Many vendors have tried to

bypass conflicting versions by using a rigid installation configuration, by

tweaking general Registry information, by configuring paths to their

version or by other contrivances. Browsers, data access components, and

graphics libraries are well-known examples of this highway to DLL hell.

The usual suspects If your program utilizes such risky components, you should look into

using maximal case along with best case. This could consist of trying to

install your program on a computer where all the usual suspects are

already installed. However, it is not always so easy to identify them. For

this particular type of test, it would be worthwhile to join various user

groups, discussion forums. Conduct a compatibility test at the earliest

opportunity as soon as you suspect a source of problems. If you notice for

the first time during system testing that your program cannot be installed

alongside another widely used program, it is probably too late to do

anything about it in the current version.

Upgrading previous versions

Along with reinstallation, upgrades of earlier program versions may also

have to go through system testing. Which of the many outdated versions

are upgradable? This can only be decided on a project-specific basis.

Configurations Highly configurable programs also run into a volume problem when

testing upgrades to prior versions. Which program configurations should

be checked? Must all upgradable versions be tested in every possible

configuration? Precise analysis of various configurations and their effects

can save a great deal of work here. Perhaps a reasonable compromise

would be to limit testing to scenarios that are also used elsewhere. Check

if the various configurations of your program are already available for

smoke or regression testing before updating them manually. The test

scenarios used prior to releasing the last version can thus be reused when

testing upgrades. The best approach is to record all test scenarios in your

source code control system or configuration management from the start.

Testing in the Real World 1 19

Installation
options

At the same time, do not be too extravagant with installation options.

Each installation option is a factor in the number of required test cases

and these add up. If you count the large number of supported operating

systems, the number of upgradable prior versions of your program, and a

handful of various installation options, you will quickly come up with

dozens of installation tests that really ought to be performed. The

“Coverage of System Scenarios” section below offers some tips for how to

combat this kind of exponential surge in testing without sacrificing too

much security.

Uninstallability

Installation and deinstallation programs are rarely made for specific

applications these days. Instead, people fall back on ready-made installer

programs. These programs are able to cleanly install and uninstall

software packages. The current general policy is not to delete altered files,

but to advise the user that the files must be manually deleted.

Using an installerIf you rely on a common installer program to perform your installation

routine, you will not, in most cases, need to worry about being able to

uninstall your software.

3.6.4 Capacity Limitations

Further system test issues include potential capacity limitations and

overall system performance. Do you know the maximum file sizes

allowed by your program? Or the maximum number of data records,

simultaneous users, and the like? Probably not. These limitations are

probably not very critical in many cases.

Warranted
characteristics

That is, unless you are required or want to provide this information in the

software manual, PR material, or on the packaging. You would be well-

advised in this case to regularly verify this information using system tests.

Otherwise, you run the risk that such a warranted characteristic becomes

unrealistic. Upshot: this can be construed as a serious flaw and can even

lead to your being sued. Key test cases for system testing in this case are:

stress testing and robustness or capacity testing.

12 0 System Testing

Stress testing It is now common practice to test high-traffic Web applications by using

stress testing. The fundamental approach to this method is described

in the section below on performance testing. For a systematic approach

to stress testing an application’s individual components, see

[FröhlichVogel01]. [Nguyen01] offers a comprehensive introduction to

Web application testing.

3.6.5 System problems

The next category of test cases for system testing centers on how an

application under test responds to problems in the programming

environment, when the system crashes, network access is unavailable,

the disk is full, or the printer is not ready or possibly even non-existent.

System errors By combining the operating system, the programming language being

used and its methods of dealing with problems, the application

programmer should have enough resources to at least catch unexpected

system failures before data gets lost and enable the application to be

restarted in a controlled manner. In many applications, the error handling

routines for this are more likely the subject of design reviews rather than

explicit testing. In most cases, you can limit system testing for one of the

first versions to a single test that generally checks for the proper

interception of system errors. These general tests can be left out of

system testing on subsequent versions. However, this presupposes that

source code reviews are regularly conducted to ensure that the

developers are sticking to the stipulated error handling strategy.

Impact on
workflow

Yet it’s a whole different story if a hardware component has more than

the usual impact on the workflow. To find relevant test cases for this,

locate situations in the program where the workflow depends on

flawlessly functioning hardware. For example, ask yourself the following

questions:

� Are there places in the program flow where something is outputted

that cannot be repeated as such?

� Was data altered after an output operation without the user having

approved the correct output?

Testing in the Real World 1 21

� Does the workflow specify somewhere that data be fetched by another

computer over the network? What happens if the network is

unavailable?

� Do steps in the workflow depend on data being saved, e.g. on

removable data media?

Is repetition
possible?

Generally speaking, all places in the workflow are considered critical that

cannot automatically be replicated when a failure occurs. Examples of this

are: importing data, end-of-the-day routines, print job page numbering

and the like, any type of automatic number assignment, and reading from

or writing to removable media such as floppies, CDs, or tape.

If you have identified places like these in the workflow, during system

testing you should check that the program enables the operation to be

repeated if a hardware error occurs.

3.6.6 System Security

The final group of test cases for system testing consists of prevention

against a hostile attack on data and the program. These tests cannot, and

should not, answer the question of whether the user’s IT environment is

sufficiently safeguarded against hackers, viruses, data theft, sabotage, and

the like. This is the responsibility of a company’s security experts, network

administrations, and IT managers. The application-based tests for security

should therefore be limited to aspects of the application and the data used

by it.

User authentication

When an application performs user authentication, the test cases

generated for the application can only be used once the system is

complete:

� How many failed login attempts does the system allow? What happens

then?

� Is a password required? Does a password have to be changed at regular

intervals?

� Can a password be changed and then changed right back to the

previous one?

12 2 System Testing

� Do users adhere to password specifications such as length and

characters contained, etc?

� Is a user account disabled if a password has been entered incorrectly

several times? Who can re-enable the account?

� Does changing the password make the old password invalid?

� Does changing the user ID make the old user ID invalid?

� Are deleted user accounts safely removed from the system?

� Are user IDs and/or passwords saved without encryption or sent over

the Net?

� Is an account cancelled after being inactive for a certain amount of

time?

Data security

Further test cases cover instances where protected data is accessed.

� Have access rights been assigned consistently throughout? Is access to

restricted data via detours through other modules also prevented?

� Do products and add-ons purchased additionally also comply with the

assigned rights?

� Can the database be accessed directly, e.g. using report generators,

system tools, or other tools from the database vendor?

� Which data is deleted? Is data actually deleted, or does it simply end

up in the system’s Recycle bin? Who has access to the contents of the

Recycle bin?

� Is critical data overwritten when deleted? Or is it simply flagged as

deleted, yet can still be detected in the disk image?

� Who can modify the database being used? Who can save or modify

stored procedures?

Targeted Attacks

The knowledge and tools required for a targeted attack on a system via

the Internet or an intranet generally exceed the resources available to

developers and testers. Knowledge of this kind is seldom learned—it is

more likely to be gained through trial-and-error practice instead. If you

Testing in the Real World 1 23

want or need to conduct penetration testing, you should get help from an

expert.

An enormous increase in these types of attacks has gone hand in hand

with the Internet’s resounding success, with the potential for security

breaches having grown to such an extent that several universities and

other public institutions have now also taken up the issue of Internet

security. A good introduction to Web sites on this subject can be found in

German in [TUBerlinSecurity] and in English in [Cert].

3.7 Performance Testing

The most important tests come last. There is one situation that frequently

leads to delivery deadlines not being met or programs being supplied

that, although they contain all the requisite functions, cause problems in

real-world use or are unusable for all intents and purposes. It is poor

performance under heavy loading.

Predictable
maximum load

The performance of individual program parts, assembled modules, and

entire systems or enhancements should be checked in the course of unit,

integration and system testing. Performance or load tests check whether

the program can handle the anticipated or predicted maximum load. This

means whether the program functions reliably and at an acceptable speed

under maximum load. Load or stress testing goes beyond the maximum

load to the point where the program or one of its components ceases

functioning. The component that failed is then investigated in order to

identify possibilities for optimizing its performance or for early detection

of the overload situation.

3.7.1 System Parameters

Performance and stress testing is carried out using the minimum

recommended hardware configuration. In so doing, the following system

parameters are taken to their design limits or beyond, either in real-world

or simulation testing:

� Number of concurrent users

The number of concurrent users of an application is systematically

increased particularly in the case of client/server or Web-based

12 4 Performance Testing

systems. The section “Stress Testing for Middleware” on page 127

contains an introduction to the technical background of such tests and

the procedures used.

� Memory use

Physical, virtual and temporary memory is artificially reduced by

running other programs or stubs, thus reducing available memory. If

possible, multiple instances of programs requiring large amounts of

memory are created. Functions are repeated or carried out

continuously to check that memory is released properly so as to test its

availability. In Windows operating systems starting with Windows NT

(NT, 2000, XP), the /maxmem switch in boot.ini can be used to reduce

the amount of RAM used by Windows. For details, refer to [MSDN].

� Computing time

Here, too, an artificial shortage is created by the use of other programs

or stubs. Where possible, processes are carried out in parallel in order

to trigger deadlock situations.

� Network capacity

The network is operated at the minimum recommended bandwidth.

Available network capacity is reduced on the hardware side or

artificially by running competing programs.

� Data access

The number of competing data requests is increased. Here, too,

continuous testing is useful for detecting deadlocks.

� Data volume

The size of the entire database or the amount of material requested in

database queries is increased.

Performance and stress testing performed by reducing system resources

mainly checks response times and the robustness of the program under

load conditions. The simplest tool used for this is a stopwatch that

measures the response times of the program being tested. However, a

number of very effective (and expensive) testing tools have been

developed for this job.

Testing in the Real World 1 25

3.7.2 The Quadratic Effect

Another quasi-predictive type of performance testing focuses on the

“quadratic behavior” of programs. These tests can be carried out at any

time without much effort.

What is the quadratic effect?

The time needed by a part of a program to complete a task can often be

expressed as a polynomial. A polynomial is an equation with only one

variable of the following form:

k0 + k1n +k2n2 ... + kmnm

k0 to km are constants. The subscript m indicates the degree of the

polynomial. For the purposes of performance testing, n is equal to the

amount of input data.

If, for example, we first consider a program that always takes

400 milliseconds for a particular action (k0=400) plus an additional

100 msec. for each block of input data (k1=100), the total time for

10 data blocks is:

400 + 100 x 10 = 1400 msecs. = 1.4 secs.

A different algorithm for the same task might require only one tenth of

the time for k0 and k1 (k0=40, k1=10), but an additional 1 msec. for the

square of the number of input data elements. For 10 data blocks the

processing time is calculated as follows:

40 + 10 x 10 + 1 x 102 = 240 msecs. = 0.24 secs.

For 10 data blocks the second algorithm (A2) is thus significantly faster

than the first (A1). It is also faster for 20 data blocks:

A1: 400 + 100 x 20 = 2400 msecs. = 2.4 secs.

A2: 40 + 10 x 20 + 1 x 202 = 640 msecs. = 0.64 secs.

For 100 data blocks, however, the situation looks different:

A1: 400 + 100 x 100 = 10,400 msecs. = 10.4 secs.

A2: 40 + 10 x 100 + 1 x 1002 = 11,400 msecs. = 11.04 secs.

12 6 Performance Testing

The fact is that with a sufficiently large data set a program whose

processing time is represented by a polynomial of degree m (in the case

of A2 m = 2) is always slower than a program whose processing time is

derived from a polynomial of degree m – 1. To be sure, the constants k0,

k1, k2 influence the size of the data set required to confirm this fact, but

not the fact itself.

Revealing the Quadratic Effect

How can this relationship be utilized in performance testing? Should we

determine the appropriate polynomial for every program in order to

determine its degree? No. There are simpler ways to identify programs

whose performance corresponds to a polynomial of the second degree

and which consequently exhibit the quadratic performance effect.

The first example above was based on 10 data blocks, the second on 20.

In other words, the amount of data was doubled. However, the

processing time was more than doubled — from 0.24 secs. to 0.64 secs.

Whenever you observe this phenomenon you have most likely

discovered a program exhibiting the quadratic effect.

Thus, you should always carry out at least two performance tests, in the

second test increasing the data input by a factor of X big enough to yield

significantly different results. If the processing time increases by more

than a factor of X, you have landed your fish.

But why is the quadratic effect so dangerous? What is the situation with

third or fourth degree polynomials?

Programs whose performance reflects a higher degree polynomial (m > 2)

are already so slow, even with small amounts of data, that the program

developers themselves usually notice that something is wrong. However,

when only a single test is carried out the program developers frequently

fail to notice the quadratic effect because they are only working with

small or minute amounts of data in this case.

How does the quadratic effect occur?

When part of a program requires a processing time that is proportional to

the amount of input data n, and this part is activated n times, a quadratic

Testing in the Real World 1 27

effect occurs in the whole program. An example is an array to which

elements are added in a loop which are inserted at the beginning of the

array. The time needed for the insertion of an element at the beginning of

the array depends on how many elements the array already contains.

Consequently, the entire loop exhibits a quadratic effect. If the individual

elements are appended at the end of the array the quadratic effect does

not occur since the addition of each new element involves the same

amount of time, regardless of the number of elements in the array. A

similar situation applies when new records are added to database tables

with existing indices. When the number of new records to be added is

sufficiently large, inserting new indices into the existing structure will

always be slower than deleting existing ones and starting over.

For a detailed discussion of the quadratic effect in C++, refer to

[KoeMo00].

3.7.3 Stress Testing for Middleware

When users concurrently work with the same program, the issue of

where the program of an individual user is executed has to be dealt with.

There are basically two possibilities (with as many classifications in-

between as you like):

The program runs entirely in the memory of the user’s workstation and

only accesses the data it needs from a server (fat client).

The program runs entirely on an application server, with the user’s

workstation only providing the GUI (thin client)

MiddlewareMiddleware refers to applications running on the application server

between the GUI unit (the user’s workstation) and the data storage unit

(the database server).

The performance of applications using thin clients (typical Web

applications are the best example) depends on the crucial question of

how many concurrent users the application can support without being

overloaded. Or, to put it differently, what effect an increase in the

number of concurrent users has on the program’s performance.

1 28 Performance Testing

Applications are considered well scaled if they demonstrate performance

only marginally affected by the number of concurrent users or are

completely unaffected by user numbers.

Scalability How can the scalability of an application be tested? The answer is actually

very straightforward: start the application on an application server and

allow a number of users to work with it. Measure the response times of

the application. Increase the number of users by a factor of X and

measure the response times once again. If an application scales well, the

response times should increase by a factor less than X (see also the

previous section on the quadratic effect). The best outcome is when there

is no increase in response times whatsoever.

User profiles In order to obtain a realistic impression of the behavior of an application

in real time, users should not be carrying out the same action at the same

time. It is better to distribute the actions of the users in the way this

normally occurs. If no previous knowledge about this is available,

estimates have to be used. If 20% of the users of your Web application

will be submitting orders, 40% examining the price list, and the others

simply browsing the site and looking at banner ads, divide up your virtual

users in the same way during the load test.

A further comment is made here regarding the underlying technology:

State-dependent
vs. state-

independent

The scalability of an application depends strongly on using as few state-

dependent objects as possible. State-dependent objects are those that

maintain an internal status that has to be preserved between two uses of

the procedure. This necessity means that a dedicated area of memory in

which the actual state of the object is stored has to be set aside for every

such object. State-independent objects, on the other hand, store all

values that have to be retained in a database as soon as they complete a

task. As a result they do not possess any variables of their own for which

an area of memory would have to be reserved when the object is loaded

into RAM. They operate in their methods with local variables only. Since

the code of objects of the same class in RAM is normally present only

once, only a minimal amount of RAM is occupied when objects are state-

independent, i.e., do not require their own address in RAM.

Testing in the Real World 1 29

The question as to how many state-dependent and state-independent

objects are used can be answered in a review. In so doing, it is possible to

work out the application’s scalability by examining the application design.

ImplementationI said that scalability testing is “actually very straightforward”. Why this

qualification? Problems that arise during the load testing of middleware

are mostly connected to the implementation of the test environment.

The application server has to be equipped approximately the same as the

server that is actually used later on. In order to test concurrent access by

1000 clients, 1000 PCs would be needed that are simultaneously

connected to the application server, something that would be unrealistic

(at the very least in the case of the second test with 10,000 clients). That

is why it is necessary to simulate a large number of users on a single

computer. Of course, this computer also has to be appropriately

configured to accommodate a large number of processes concurrently.

Different drivers have to be written for the various user profiles, and so

on.

Tools are now available which support test procedures of this kind,

especially the simulation of a large number of concurrent users.

3.7.4 Database Access

The performance of procedures for obtaining access to relational

databases is highly dependent upon whether the database search engine

is capable of optimizing access or not. Today’s databases possess various

possibilities for optimization, consequently the design decisions that

support or hinder access optimization are in turn dependent upon the

particular database being used. Generally speaking, access procedures

that can be carried via indices perform significantly better than those that

operate without an index.

Querying the level
of optimization

Many databases nowadays offer the possibility of checking the level of

optimization achievable (completely, partly, or not at all). It is advisable to

subject all access procedures used by your application to this simple test

in order to be certain that all the necessary indices are available and that

nothing else is standing in the way of optimization.

1 30 Test Coverage

Two variables have to be taken into consideration when testing a

database’s performance. The first is the size of the database, i.e., the

number of stored records. The other is the number of competing access

attempts, i.e., how many other users are concurrently trying to access the

database. Both variables influence system performance.

Data generation
tools

In database performance testing, a data generation tool that generates

the desired number of records is very useful. You can create this tool

yourself. If you need test data only for a special application or a special

table within the application, writing your own small program is usually

sufficient to generate the necessary data. If you frequently need test data

of varying structures or quantities, it is advisable to buy a tool specifically

designed for the job.

Virtual users For database performance testing you also need drivers that act as virtual

users accessing the database. As in the case of stress testing middleware,

when selecting a driver it is advisable to ensure, if possible, that all the

different kinds of access (insert, update, delete, select) are carried out at

realistic frequency levels.

3.8 Test Coverage

In selecting test cases for unit, integration and system testing, you will

want to avoid unnecessarily testing the same procedure more than once.

You’ll also want to be certain that as many of the procedures as possible

occurring in the program are tested. This leads to the problem of test

coverage. Many authors addressed this issue early on in discussions of

software quality assurance and testing. Five indices are commonly found

in the literature, C0 to C4. The C stands for “coverage.”

3.8.1 Classic Coverage Indices

The level of coverage achieved with structured basis testing is referred to

as C0 statement coverage. C0 is the ratio of the number of statements

tested by the procedure to the total number of statements. Additional

indices are:

� C1 branch coverage: the ratio of the number of branches tested to the

total number of branches.

Testing in the Real World 1 31

� C2 Condition coverage: the ratio of the evaluated expressions in

conditions to the total number of expressions in conditions (see the

coding example in the discussion of structured basis testing in the

section “Structure testing” on page 104).

� C3 Combinations of conditions coverage: ratio of the number of

combinations of conditions to the total number of possible

combinations.

� C4 path coverage: Ratio of the tested paths to the total number of

possible paths.

Branches and
paths

The difference between branch coverage and path coverage is illustrated

by the following activity flowchart:

Figure 3.9 Activity flowchart for finding a destination

The flowchart above shows an extract from the activities for reaching a

particular airport with the help of specified state, zip code and/or city

names. Only the section up to the activity “Look for the city” or up to

detection of an error is of interest here.

Call: State, Zip code, City

Look for Zip code area
[Zip code not empty]

[found]

Look for the city
[City not empty]

[found]

[not found]Error

[Zip code empty]

[City empty]

[not found]

1 32 Test Coverage

Two paths are sufficient if complete coverage of the branches in this area

is required:

1. Zip code not empty/zip code not found/city not empty

2. Zip code empty/city empty

For complete path coverage, however, it is also necessary to test the

following paths:

3. Zip code not empty/zip code not found/city empty

4. Zip code empty/city not empty

It is obvious that the number of possible combinations of conditions or

paths in particular can quickly become very large. As a result, a 100%

coverage of C3 and C4 cannot be achieved in most cases. Consequently,

the task of test management is to specify realistic values for the indices

that need to be attained.

3.8.2 What Information Do Code Coverage Indices
Contain?

Coverage indices
are snapshots

Classic coverage indices focus strongly on internal program structures

right down to the source code structure. This closely correlates with the

idea that testing begins when the program has been written. However,

this notion no longer applies today. Today’s approaches places more

emphasis on the alterability of software. The program organization and

the source code structure can be changed at any time via refactoring

measures. That is why the classic coverage indices are regarded nowadays

merely as snapshots of specific sections of the software and the test

situation.

Of course, it is always interesting to see what percentage of the source

code is even covered by testing, especially in the case of regression

testing. When a tester notices that a particular routine is covered only to

a small degree by testing, or not at all, it is probably a good idea to check

out what this routine actually does. Every unchecked line of source code

can contain a more or less serious error. However, whether undetected

errors are more or less serious is not indicated by the coverage indices. A

risk analysis is required for this.

Testing in the Real World 1 33

Coverage indices
are deceiving

The classic coverage indices provide hints about untested code. As long as

the test coverage remains below 50% the tester is right to feel uneasy.

But what is the situation when testing reaches a coverage level of 90% or

more (extremely unlikely in the case of C3 and C4)? Does this make you,

the tester, feel better? Don’t kid yourself! How do you know that the

program is doing everything it is supposed to? Coverage indices refer only

to the code that’s there, yet say nothing about missing code.

Take a simple example from [Marick97]. Let’s assume that a certain

function contains the following section of code:

Listing 3.3 Example of missing code

If tests are carried out that cover both the IF branch and the ELSE branch,

we have done everything that is required from the point of view of code

coverage. However, we have not identified the real error. This code is,

quite simply, incorrect. Actually it should be like this:

Listing 3.4 Completed code

return_Value = doThisAndThat()

IF (return_Value == FATAL_FERROR)

EXIT(3) // exit with error message 3

ELSE

// everything OK

ENDIF

return_Value = doThisAndThat()

IF (return_Value == FATAL_FERROR)

EXIT(3) // exit with error message 3

ELSE IF (return_Value == RECOVERABLE_ERROR)

// eliminate error cause,

// new attempt

ELSE

// everything OK, continue

ENDIF

1 34 Test Coverage

Errors of omission like this are not discovered when the focus is

exclusively on code coverage indices. Source code reviews are the best

way to find such errors. When doing this, the most common errors

should be checked off using a checklist.

Errors of omission can occur in the course of analysis, design, and coding.

They affect documents, models, and source code, and manifest

themselves in missing code, an excessively simple view of things, failure

to take account of real situations, etc. Anybody involved in the creation

or usage of a document, model or section of source code in the course of

software development can contribute to the detection of such errors.

Always ask things like:

� Are these all possible variants or aspects of the problem?

� What possible special cases are there? What would happen if …

� Is there a different way of looking at this? Could someone come up

with the idea of doing it quite differently?

3.8.3 Function Coverage

When it comes to questions of coverage and risk estimation, rapid

application testing focuses on the functions of the program being tested.

The first and decisive question is always: “What is the program actually

doing?”

Function coverage involves the ratio of number of functions tested to the

total number of functions. However, this doesn’t refer to functions within

the programming language. As was pointed out above, these internal

functions are either the subject of specific unit tests or are tested

implicitly on account of their use in other functions.

Outwardly
oriented functions

In the case of function coverage, the functions are examined that the

program offers when viewed from the outside. The level of function

coverage is derived from the total number of such functions in relation to

the number that have already been tested. Of course, the ideal is a value

of 100%; however, this value is seldom reached due to cost or time

considerations, meaning priorities have to be set. The criteria to be taken

into account in deciding these priorities are discussed above in

Section 3.2 on Risk Assessment.

Testing in the Real World 1 35

Determining
granularity

When the function coverage of actual or planned testing is examined, the

question soon arises of which functions are to be covered. What

granularity forms the basis of testing? Is it better to look at large function

blocks or modules or remain at the level of small individual functions?

Where are the functions located that are relevant for determining the

degree of function coverage? These questions can be most readily

answered by referring to any analysis and design documents you might

have. As soon as you have specified the required program capabilities in

the form of a use case analysis, you have a good basis for determining the

functions to be covered by testing. Use case analysis is confronted with

the same granularity problem. For more detailed descriptions of use case

analysis and tips for determining granularity in use case analyses, refer to

[Oesterreich98] and [Borrmann+Al01], for example.

3.8.4 Generating Test Cases on the Basis of Use Cases

The use cases derived from object-oriented analyses provide a highly

suitable basis for case testing. Every use case describes a form of

application of the program. Since the use cases are part of the analysis

and design documents to be agreed upon with the customer, they are

much the same as the program specifications. If the program functions

differently from the description in the use case the customer is justified in

lodging a complaint.

Positive testsTest cases constructed from use cases are based on the program

specifications and are thus positive tests. They show that the program is

functioning in the way described in the use case. If this is not the case,

either the program or the use case is altered.

Use cases and the people applying them are summarized in diagrams or

flowcharts. However, the use cases rendered as oval symbols in the

diagrams aren’t the functions for which complete test coverage is

required.

1 36 Test Coverage

Figure 3.10 Extract from a use case diagram

The normal case
and variations

thereof

In order to determine the functions to be covered it is necessary to

consult the written descriptions of the use cases and, where possible, the

activity flowchart produced for the use case. The procedure for the use

case under typical and atypical conditions is laid down in the written

description at minimum. The normal situation and the variations on it

define the desired functions of the program that need to be covered by

the planned test cases or those actually performed. The normal case

defines the best case path through the use case. Every variation produces

a new path. The paths that a use case can follow are more obvious when

an activity flowchart is constructed.

Figure 3.11 Extract from an activity flowchart

Sales

Create quote

Determine
total costs

[Costs > Limit]

[Costs <= Limit]Payment
on account

Testing in the Real World 1 37

Viewing the activity flowchart enables the possible paths to be discerned

directly and the program functions to be identified. If the section above is

regarded as part of the “Create quote” use case, we see that the program

provides an additional function in one special situation, namely when

costs exceed the allowable limit. In this case, payment conditions specify

a payment on account.

Function/Test Case Matrix

Since a test case frequently covers several functions simultaneously, it is

interesting to see which test cases need to be carried out at minimum in

order to cover all functions. This is what the function or test case matrix

does.

Table 3.7 shows a simple function/test case matrix. This matrix shows that

the “Edit” test case is also covered by the “New” test case if it is assumed

that “New” does not cause an empty record to be saved but rather a new

record containing data. Likewise, the test cases “Copy” and “Delete” can

be omitted when the “Cut” test case is executed.

In real life such comparisons between identified program functions and

planned or already completed test cases are somewhat more complex.

Test case
Function N

ew

Pa
st

e

E
d

it

C
o

p
y

C
u

t

D
el

et
e

Create record X X

Save record X X X

Delete record X x

Record
editing

X X

Copy/cut record to
Clipboard

X X

Paste record from
Clipboard

X

Table 3.7 Function/test case matrix

1 38 Test Coverage

Figure 3.12 Function/test case matrix of the licensing module

Redundancies
and shortcomings

The function/test case matrix of the licensing module from the case study

at the beginning of this chapter depicted in Figure 3.13 not only shows

which test cases are superfluous with regard to use cases, but also that

one use case has not been considered. The use case “Correct checksum”

was not covered by any of the test cases in the test plan derived from the

requirements analysis.

3.8.5 Test Coverage and Object-Oriented Languages

The classic test coverage indices are more difficult to work out for systems

developed with an object orientation than for those with a procedural

orientation. This is due mainly to the mechanisms of inheritance and

polymorphism of object-oriented languages.

Polymorphism
and delegation

In object-oriented languages branching occurs not only by virtue of

structural commands such as IF – THEN – ELSE, but also by virtue of

polymorphy. In addition, programs designed with an object orientation

can change their behavior during run time through the delegation of

tasks.

For instance, when the “Save” method of object A is activated a

completely different code can be put into operation as compared to the

“save” method of object B. Which of the two objects is activated in a

particular situation may only be decided at run time. Consequently, in

order to determine the degree of path coverage C1 it is necessary to

check which classes offer the “save” method, whether the “save” method

Testing in the Real World 1 39

was inherited from a higher class, and whether it might have been

overwritten.

Basic and
framework classes

The coverage indices C0 statement coverage to C4 path coverage are also

significantly affected by whether or not the basic or framework classes

used are considered. Basic and framework classes can be:

� Used without specific testing (no effort)

� Subjected to a code review (low effort)

� Present in integration testing by virtue of specific tests (moderate

effort) or

� Tested by means of individual tests (considerable effort)

ReusabilityHere, too, the decision on the testing approach depends upon a risk

analysis. Apart from the acceptance risks and technical risks described

above, reusability also plays a role. In most cases additionally purchased

class libraries and frameworks are not tested separately—unless as part of

the evaluation prior to the decision to purchase. The higher the assumed

number of users of these libraries and frameworks, the lower the

probability that serious errors have not yet been detected.

State-based Path Coverage

The methods of a class can only be tested by creating an object of this

class. By creating such an object, however, processes occur that

determine the state of the object and can impact the test results.

In the same way, the order in which methods are called changes the state

of an object in a known way. If the methods of an object are called in a

somewhat different order a completely different state can result.

However, as was shown above, the current state of an object is always

one of the preconditions for testing a specific method.

State flowchartsIn object-oriented analysis the confusing multiplicity of different states,

method calls, preconditions, and changes of state is depicted in state

flowcharts.

The state changes brought about by the various method calls are

described in a state flowchart.

14 0 Test Coverage

Figure 3.13 State flowchart for a voucher

Figure 3.13 shows that the voucher object is in the state “being

processed” after being created. If the “add item” method is called, the

voucher object switches its state to “processed”. Subsequent calling of

the “add item” method doesn’t produce a new state and the voucher

remains in the “processed” state. Not until the “print” or “save” methods

are activated does the voucher move into the “printed” or “ready to

print” state. In the same way, activation of the “print” method moves the

voucher into the “printed” state.

One test case
per path

In order to determine the test cases, the possible paths are established

and the test cases designed that correspond to these paths. An individual

test case then no longer involves running a single method, but rather

consists of a series of methods whose activation results in the object

assuming the states corresponding to the path to be tested.

Such a test case is most readily comparable to a workflow test case of a

procedurally developed program. This means that testing doesn’t merely

involve a single step, but a series of steps, i.e. a work process.

being processed

ready to print
Print

Print

Add item
Add item

Create

Save

printed

processed

Voucher

Testing in the Real World 1 41

Object-oriented analysis and design methods thus offer the test planner

the opportunity of structuring the set of possible work processes and

making a sensible choice based on the state changes of an object or a

group of objects. Once a state flowchart describing the way an object

functions is available it can be used to establish the test cases and the

state-related path coverage for the object.

3.8.6 Coverage of System Scenarios

Apart from the issue of function coverage, the question as to which

system scenarios have to be covered is very important in rapid application

testing. As was mentioned above in the discussion of the possible test

cases in system testing, system scenarios are a factor that can quickly

drive up the number of tests required, especially when it comes to

heterogeneous system structures as commonly seen in Web applications.

That is why, as a rule, it is not enough to test Web applications in the

uniform environment found on a company intranet. Testing often has to

be conducted under real-life circumstances with firewalls, differing

browser types, different Java Virtual Machines (JVM), and other

components. This leads to a large number of possible combinations. One

way of reducing this number to a manageable level is setting up pairs.

Teaming

Setting up pairs can be done when combining the current values of

influence factors is restricted to pairs in order to obtain a manageable

number of combinations. “Restricted to pairs” means that, of all possible

combinations, only those are selected that guarantee that all pairs of

influence factors appear once. Are you with me?

An example of
pair setup

An example shows most clearly what this is all about.

Let’s take another look at the licensing model used in the case study at

the beginning of this chapter.

In case you’ve forgotten: the licensing module was concerned with

software licensing and the detection of unauthorized use. The first time

the licensed program was loaded its use could be authorized for a limited

period only or permanently by entering an activator key for its use with

14 2 Test Coverage

the current workstation involved. At the end of the licensing period this

could be extended, and so on.

Influence factors The licensing module makes use of a control file that can be stored in a

dongle or under a hidden key in the Registry. For your testing of the

activation of the software when started for the first time, two important

influence factors were established, namely the operating system and the

memory size of the control file. Since we are concerned with a Windows

program for professional users, we want to restrict use to the Windows

98, NT, 2000 and XP operating systems. As a result, the following

scenarios have to be tested:

As along as you are only dealing with two factors, the total number of

pairs of influence values is equal to the total number of all combinations

of possible values. Starting with the third factor, however, the situation is

different:

Number System File

1 Win 98 Dongle

2 Win 98 Registry

3 Win NT Dongle

4 Win NT Registry

5 Win 2000 Dongle

6 Win 2000 Registry

7 Win XP Dongle

8 Win XP Registry

Table 3.8 All combinations of two determining factors

Number System File Time limit

1 Win 98 Dongle Y

2 Win 98 Dongle N

3 Win 98 Registry Y

4 Win 98 Registry N

Table 3.9 All combinations of three determining factors

Testing in the Real World 1 43

Combinations and
pairs

The new factor “time limit”, which distinguishes between limited and

unlimited activation, causes the total number of combinations to rise to

16. However, the total number of value pairs is only 8, as the following

table shows:

Consequently, restricting combinations to value pairs substantially

reduces the number of scenarios to be tested. When the number of

factors and their possible values increases, the effect quickly becomes

5 Win NT Dongle Y

6 Win NT Dongle N

7 Win NT Registry Y

8 Win NT Registry N

9 Win 2000 Dongle Y

10 Win 2000 Dongle N

11 Win 2000 Registry Y

12 Win 2000 Dongle N

13 Win XP Dongle Y

14 Win XP Dongle N

15 Win XP Registry Y

16 Win XP Registry N

Table 3.9 All combinations of three determining factors (cont.)

Number System File Time limit

1 Win 98 Dongle Y

2 Win 98 Registry N

3 Win NT Dongle N

4 Win NT Registry Y

5 Win 2000 Dongle Y

6 Win 2000 Registry N

7 Win XP Dongle Y

8 Win XP Registry N

Table 3.10 Reduced combinations of three determining factors

14 4 Test Coverage

overwhelming. Under [Pairs] you will find a small Perl script that contains

a table showing all the value pairs of the influence factors in a given table

of influence factors and their possible values. In his documentation,

James Bach, the author of the program, states that with 10 influence

factors, each with 26 possible values, his program can extract 1,094 pair

combinations from the 141,167,095,653,376 possible.

Influence Factors, Test Cases, and Test Scenarios

Nonetheless, 1,094 test scenarios is still a large number that can scarcely

be dealt with. That is why it is very important to recognize which

influence factors really exist and which test cases can be influenced by

them. In the example of the licensing module, two factors were sufficient.

However, only the one test case “Activation of the software upon

launching it for the first time” was dealt with, whereas the range of

functions of the licensing module suggests many further test cases that

also have to be run. The question is: Do they really? Do the operating

system and the way the control file is stored really have a different effect

on the test case “Activating the software” than on the test case

“Reactivation of the software after expiry of the license”? Or does the

operating system even have a different effect on every single test case?

Where exactly are the differences? It isn’t necessary to put both test cases

through all the scenarios unless the effect can be expected to be different

in two different test cases. Consequently, it is well worth taking the time

to closely examine the exact kind of effect.

Analyzing effects In the example of the licensing module, the effects of the operating

system and storage location for the control file result from the fact that

each operating system uses a different .dll file. When the control file is

stored in a dongle a different system-specific DLL procedure is used than

when the data is stored in the Registry.

All program functions that use a system-specific DLL procedure are

affected by a change of the operating system, not just the storage of the

control file. As a consequence, of the two influence factors for which we

want to cover all variants, the operating system has four variants, the DLL

procedure 19. When combined this yields 4 * 19 = 76 test scenarios that

have to be covered.

Testing in the Real World 1 45

Checking function
coverage

There is no need for further analysis if full coverage of functions using 19

or fewer test cases is the objective. In this case, all that needs to be done

is to carry out all the test cases in the four scenarios resulting from the

four operating systems. However, when full function coverage can only

be achieved with substantially more than 19 test cases, it is worthwhile

taking the time to conduct an analysis based on the DLL functions that

actually occur.

In order to decide which test cases should be carried out on the different

operating systems, a function/test case matrix indicating which DLL

function is covered by which test case has to be constructed.

In this matrix we look for the minimum combination of columns

sufficient to yield an X in every line. If you can’t work out the minimum

combination immediately, use this easy procedure:

1. Mark the column that currently has the most X’s, e.g. in color.

2. Delete the X’s that are in the marked column(s) from all the other

(unmarked) columns.

3. Find the unmarked column that now has the most X’s and mark it as

well. Return to step 2 and continue repeating the procedure.

When all columns are either marked or empty, the marked columns show

the minimum combination of columns. This way you have located all the

test cases that need to be carried out to guarantee a satisfactory level of

coverage.

DLL function Test case from specifications analysis

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

etc.

Checksum X X X X X X X

CeNum X X X X

CompNo X X X X X X X

CopyAdd X X X X X X

etc.

Table 3.11 Function/test case matrix

Methodologies and Tools 1 47

4 Methodologies and Tools

A fool with a tool still remains a fool.

(R. Buckminster Fuller, inventor, engineer,

philosopher, and poet)

4.1 Debugging—Another Use Case

After covering the range of potential test cases for unit, integration,

system and performance testing and considering the coverage possible,

we may be able to get a firmer grasp of the issues by exploring an

additional use case.

The following sections discuss finding bugs (as many as possible),

eliminating these and ensuring that they are in fact removed from the

system. The use case also demonstrates how bugs are located exactly,

isolated and described in order for them to be forwarded to the

development team. The process as a whole is called debugging.

Debugging is not just tracking down bugs by using a debugger.

Debugging consists of more than this and can be broken down into these

steps:

1. Performing a test case where a bug is pinpointed

2. Isolating the bug

3. Documenting the bug

4. Fixing the bug

5. Verifying that the bug has been properly removed

These steps in the process are not necessarily divided up between tester

and developer. Even when the developer has checked a module prior to

release, he or she carries out these steps—mostly without any

superfluous formalities and, more often than not, in a woefully haphazard

way. When “testing and improving” (see Chapter 2, “Testing: an

Overview”), documentation may be limited to a brief remark or an entry

in the development environment’s ToDo list.

1 48 Debugging—Another Use Case

Systematic
debugging

The formalities concerning documenting bugs and the test cases

performed are set by those running the project. This chapter will be

devoted to considerations surrounding systematic debugging.

The following use case provides a simple illustration of the process of

debugging, from first detecting a given bug to checking that it is eliminated:

Test case: Stock Transaction Posting with Printout of a Delivery Note

Expected outcome: Delivered quantity is withdrawn from warehouse stock

4.1.1 The Test Case

It is probably clear to most people what a stock withdrawal or posting is

as well as what a delivery note has to do with this type of warehouse

transaction. That is why I will only provide a brief description of what

happens in the test case.

Figure 4.1 Warehouse transaction posting with printout of a delivery note

The user calls an as yet unprinted delivery note and begins the print job.

One posting is made by the stock transaction module for each item on

the delivery note, resulting in the creation of a new posting record and a

reduction of inventory for that item. (Even if this is a redundant approach,

it is often handled this way due to performance issues.)

Delivery note

User

Stock

post()

per item

Stock transaction
posting

new()

Item

reduceInventory()

print()

Methodologies and Tools 1 49

We are already in the midst of daily testing routines and are testing a

stock transaction posting accompanied by a printed delivery note. When

a test case is performed, the expected outcome is compared with the real

outcome. To be able to draw this comparison, you need a specified

original state and some way of analyzing the final state. But, let’s start at

the beginning:

Performing the
test

You complete the test case, i.e. you print out a newly created delivery

note. Then you start the materials management program and check your

inventory level for the item on the delivery note. But, because you forgot

to make a note of your inventory before printing out the delivery note,

you make a note of it now and then perform the test again. While

checking the inventory of that item on your second try, it occurs to you

that the posting record in the inventory ledger should match the

expected outcome for “quantity delivered has been withdrawn from

stock”. The inventory ledger can only be printed out and not displayed on

screen. So you print out the inventory ledger and notice that the ledger

only prints out using whole numbers without decimal places. You had

entered a quantity of 1.5 KG on the delivery note. At the same time you

notice that there are no totals included in the inventory ledger.

Congratulations, you found two bugs with a single test!

4.1.2 Detecting Bugs

This simple yet realistic example provides ample evidence of what is

needed for successfully detecting bugs:

A Specified Original State

The system state prior to the test must be known (item inventory level

prior to the posting). Only then can you see what changes have been

made to the system when conducting the test case—in other words, what

the actual result of your test is. The actual result of the test includes all

changes to the state of the system!

If you want to rerun your tests, you must be able to return the system to

the same state as it was prior to the test. This applies to all aspects of the

system that can influence the outcome of the test. In our example this

primarily concerns restoring the data. It is important to create a data set

15 0 Debugging—Another Use Case

outside the programming environment to be used for testing purposes

only. This data should also be included in your version control system

where possible. As a developer occupied with testing and improving the

system under development you probably do not have to resort to the

backed up database every time. However, you should make a point of

keeping a complete backup of the verified dataset somewhere nearby.

Just in case that a test destroys part of the data by accident.

Of course your system state involves many ancillary conditions which

have no effect on test results. But a caveat must be included here: “... will

presumably have no effect!” Many times it is possible to know what

factors impacted the outcome only after finding out the cause for the

error. Be prepared to completely restore the system to its original state

when carrying out critical tests—this will include hardware and operating

system specifications, hard-disk partitioning, and so on.

Appropriate Methods of Analysis

In the example above, the error was discovered on the inventory ledger

printout. The inventory ledger may be home to even more bugs you have

simply overlooked. In your pursuit of bugs, an analysis of the data the

inventory ledger is based on provides a greater sense of security and

efficiency than merely carrying out visual checks. You need tools which

allow you to access return values such as a database interfaces or

programming environment enabling you to create programs for analyzing

return values.

If you choose to automate or partially automate your test runs, you need

to be able to view the result from within your testing script. This is not

just a question of having the right tool, but also of designing your

application to be test-friendly. For a detailed discussion of this aspect, see

“Test-driven Application Development” on page 191.

Attentiveness

The total quantities missing in the inventory ledger do not really have

anything to do with the test that was run.

It is frequently the case that anomalies crop up during testing which are

not related to the test being performed. Sometimes these are minor

Methodologies and Tools 1 5 1

things which catch eye as you are completing a given test. You should be

on the lookout for signs like this. Do not ignore these signs just because

they may be unimportant at the current time. Make a note of the

anomaly and pursue the matter after you have completed running the

test you were working on. Along with strategic thinking and taking a

systematic approach, attentiveness is also the sign of a successful tester.

Self-confidence

You have a mental picture of what the program does. And then the

program goes and does something completely different! “Oh, so that’s

why,” you say. “What I was imagining was not true—I’ll try to change how

I view the program.”

Stop for a second! You may be in the process of overlooking an error.

What did this false conception trigger in you? Was it a program name,

function name or menu item? Or was it the layout of entry fields on the

screen, an icon or a combination of these? There was something funny

which meant you had the wrong mental image of what the software

does. This is what you need to pin down. Because whatever it was, the

next user will also be led to thinking the wrong thing.

4.1.3 Error Accumulation

As a rule of thumb: if you’ve found one error, there are likely more. In

most cases it’s worthwhile to carefully review the circumstances of a

randomly detected error later on. But, as I said. Later. First, complete the

current test your are running. You should try to avoid working against

your own risk assessment. If there is an overall test plan identifying

certain parts of the program over others as especially in need of testing,

then these critical areas of the program should continue to have priority.

On the other hand, errors which turn up unexpectedly may also lead you

to reconsider the assumptions you made in your risk assessment. This is

especially true if the error is exposed in a part of the program which you

had previously considered non-critical.

A case in point: A cursor-based record (local table with the result of a

database query) in a program is passed through various independent

modules, each of which makes specific changes to the record and writes

the updated version to a system log. When testing one of these modules,

15 2 Debugging—Another Use Case

you notice inconsistencies in the system log entries. In some cases the

changes to the record made by the previous module are missing. The

error is attributed to a refresh problem in the data access layer when the

record is positioned in the cursor in a certain way. Clearly, once you have

become aware of this issue, this will easily shift the distribution of risk,

because now you have to find out which parts of the program may also

be affected by this refresh problem.

4.1.4 Isolating Bugs

Isolating bugs means determining the factors which produce the bug. The

first step is being able to reproduce the error. After this, you begin to

eliminate those things which could not have contributed to occurrences

of the error.

If you are a tester and have to forward a found bug to the developers, you

can certainly make the programmers’ lives easier by providing specifics on

how to reproduce and isolate the bug. You are then protecting yourself

from the favorite response to bug reports: “Not reproducible.” Do not

mix up the process of isolating bugs with the process of finding out what

caused it. Any information provided on isolating bugs can be of help

when trying to find out what is causing them. This information is primarily

used to isolate bugs, enabling them to be recorded and described more

precisely.

If you are both a developer and tester, isolating bugs is often the first step

when investigating the cause of errors. The more precisely you can

localize an error and the more confidently it can be reproduced, the

easier it will be to determine its cause.

Reproducing
errors

In order to isolate and pinpoint where a bug is, you must try to reproduce

it. You should make a note of how the bug can be reproduced and what

needs to be taken into account. Something like:

1. Enter delivery note, enter the quantity using decimal places.

2. Print the delivery note.

3. Print the inventory ledger; the quantity is output with no decimal

places.

Methodologies and Tools 1 5 3

As you can see, the step where the item inventory level was checked has

been omitted. This step does not have anything to do with reproducing

the bug and can therefore be left out.

If a bug cannot be reproduced, this may be because the initial situation

has changed from the time it first occurred to subsequent attempts to

repeat it. Perhaps the totals in the inventory ledger are only left out when

there is only one posting record in the ledger.

Or there may be something wrong with your test evaluation. Pursue this

matter in any case—the first faulty inventory ledger is right in front of

you. There’s got to be something wrong somewhere.

Recording bugsIn our case example, the inventory ledger had to be printed out because

displaying it on screen was not possible. Even if this restriction were not

imposed, it would still be better not to limit investigation of a document

or report to the print preview but also to print it out. For one thing, the

print job forms a part of the workflow; on top of that, this print out is

documentary evidence of the bug. This is also shows that it is not you

who has made a mistake if it turns out that the bug cannot be

reproduced. In other cases, screenshots have been of help in pinpointing

the source of the error.1

Localizing errorsYou have reproduced the error and determined that the same behavior is

also present when other stock items are used. It is apparently enough to

enter a quantity including decimal places.

Could it also be a problem with the stock transaction module and not

related in any way to the printout of the delivery note?

In order to find out, start the stock transaction module and create a posting

record directly in the module. You will, of course, enter a quantity with

decimal places. After printing out the inventory ledger again, you note that

the decimal places are still missing in this posting record. But since you

have a tool for accessing the underlying data in the database, you can then

check the stock posting table. There the decimal places are still present.

You may be getting on to something ... could it be a print output issue?

1 If you want to save paper, it may be worth spending some money on a PDF printer
driver.

15 4 Debugging—Another Use Case

You’re done. You’ve localized the bug. You shouldn’t assign any special

meaning to the fact that you discovered a bug in a module you were not

even testing. After all, a test case in later testing phases rarely focuses on

only one module.

Completing test
cases

But what about our original test case Stock Transaction Posting with

Printout of a Delivery Note? If you do not have enough ways to analyze

the case, there is no way for you to judge this test case. You have noted

that printouts of the inventory ledger have something wrong with them.

The inventory ledger must be omitted from the evaluation of your

original test case.

This leads us to a very useful insight: You should not rely on the output

of programs you are testing to evaluate test cases! You must have an

independent means of checking the application being tested in order to

safely determine what the real outcome of the test is.

By analyzing stock item data and the stock transaction data at the

database level, you can state that all the data has been correctly posted

after the printout of the delivery note. You should therefore finalize this

test case, by giving it your OK.

4.1.5 Creating Bug Reports

Once bugs have been found and isolated, they are normally forwarded to

the development group. This means you have to write a bug report.

Minimum
information

required

There is a minimum level of detail required when submitting a bug report.

� A description of the bug

� Steps required to reproduce the bug

Any knowledge gained while producing the error must be included where

possible. Even if you are not sure how the bug was produced, any

information about the current system environment or other factors of

potential importance will be helpful to the developer when fixing the

bug.

Methodologies and Tools 1 5 5

A bug report for the bug discussed above could look like this:

Figure 4.2 Sample bug report

If necessary, include the program version and your name and telephone

number in case there are any questions.

Keeping bug
reports

If you are the development team yourself or the person responsible for

bug fixing, should you still write a bug report? Yes—provided you cannot

fix the bug immediately. It is often enough to write a brief note of this

during the testing and improving phase. I have made it a habit to keep

notes in my project folder even if all recorded bugs recorded have been

dealt with. It provides me with a record of what I have checked already

and where I may need to run a further test.

4.1.6 Bug fixing

We now reverse roles and step into the role of the developer who

receives the bug report. As a developer you will initially attempt to

reproduce the bug. This will ensure that you aren’t tracking down bugs

which for one reason or other do not occur in your development

Description:

The inventory ledger does not output decimal places for stock posting

quantities.

Can be reproduced by:

1. Starting the stock posting program

2. Entering a posting record including a quantity with decimal places

3. Saving the posting record

4. Printing the inventory ledger

5. The quantity in the inventory ledger is output without any decimal

places

The error was reproduced five times in five attempts.

Isolation:

The decimal places are still present in the stock posting table. The error

occurs for all posting types. Decimal places are also not output when

the inventory journal is summarized and output by stock item groups.

15 6 Debugging—Another Use Case

environment. If the error cannot be reproduced, then sit down with the

tester and try to establish what differences there are between your

system and the test system. This exercise may provide insight on what

types of things can affect the way software works.

Working from the
inside out—or

vice versa

Once you have reproduced the error, you can then begin to search for

what caused it. From the outside in or from the inside out. “Outside” is

the inventory ledger, “inside” would be the last place you are aware of in

the program workflow where the data is still correct, the stock posting

table. The bug has to be located somewhere between these two points.

We’ll start on the “outside” and take a look at the inventory ledger first.

The ledger is created by a report writer tool. There is a formatting

function linked to the quantity field preventing whole-number values

with zeroes after the decimal to be output. For example, the value 1.23 is

output in the report by this formatting function as 1.23, whereas the

value 1.00 is displayed as 1. This formatting function appears to be

working correctly. You check it one more time by using a single test

record containing a quantity with decimal places you have entered

manually.

The inventory ledger is printed from a temporary table holding the values

ready for the print queue. This table is automatically deleted after the

print job, so you set a breakpoint in your debugger right after print

formatting is complete to allow you to check this table after printing.

Then you start the program in debugging mode, complete the posting

and call the inventory ledger. After the program stops at the breakpoint,

you take a look at the temporary table. Here the decimal places are

missing. The bug must be located in print formatting.

Is everything
alright?

You have isolated the bug to print formatting and can now fix it. When

you start your program in debugging mode again and stop after print

formatting, you will see the temporary table now has the correct decimal

places in the quantity field.

Is everything alright? Probably. To be safe, you should repeat the entire

process up to where the ledger has been printed out. The spot between

print formatting and the printout itself may include additional bugs which

have eluded you thus far, because the print formatting already had bugs.

Methodologies and Tools 1 5 7

4.1.7 Verification

After the bug has been fixed, the new version of the program is

resubmitted for testing. The tester is now expected to verify that the bug

has been fixed. The test which uncovered the bug is repeated.

Repeating testsAs experienced testers, we must be able to ensure that a test can be

repeated. You are in a position to recreate the test environment and

complete all steps in the correct order because you have closely tracked

the procedures used during the first test and have kept a record of all

steps required to reproduce the bug.

If the error has occurred during an automated or partially automated test,

then you’re sitting pretty. In this case all you have to do is restart the test

in question and check the result.

So, you repeat the test and note that the bug no longer occurs. Decimal

places are now being output correctly.

Do not repeat
isolation tests

What about the other tests you carried out to produce the error? As can

be seen in the bug report, you tried performing various stock postings for

different posting types (stock putaway, stock withdrawal, breakage, etc.)

but found no differences. Should these tests also be repeated? No, there

is no need for this. Tests carried out to produce an error are too vague and

unstructured to merit being repeated. You could just as easily have tried

out different posting types (which would have been a good idea) and

different stock item groups and quantities. There are just too many

possible combinations—which was clearly evident earlier in the chapter.

Do not undermine test management decisions made for your test case

priorities when finding a bug or verifying that it has been fixed.

4.1.8 Regression Testing

After all the bugs found to date have been fixed, development of the

software can go on. Months down the road, you get a bug report from

your hotline saying that the inventory ledger does not have decimal

places! What happened?

It could be this easy: A developer may have inadvertently linked the

buggy print formatting module into a subsequent version of the program.

15 8 Automating Testing Procedures

These things happen. However, the use of source code control systems

are designed to safeguard against this and can be relied upon to do so in

almost all cases.

Regression testing is needed to detect such lapses. Regression testing

should not only check if bugs previously fixed show up again. This type of

testing should also verify that functions which worked correctly in the

past are also working correctly in the new version.

Generally speaking, all completed test cases are likely candidates for

regression testing. Much like bug fix verification, the goal of regression

testing is to repeat a test which has already been performed. This often

leads to cries for automating most testing procedures. Do not

underestimate the effort required to set up and maintain automated

tests. Including all test cases in regression testing is very likely to make

any testing or development go over budget. Specific advice on regression

testing and the selection of appropriate test cases is covered in Chapter 2,

“Testing: an Overview.” I take a closer look at Automating Testing

Procedures in everyday testing in the following section.

Introduce a source
code control

system!

As a general rule, when using source code control systems the risk

involved is so minimal that it is not a good idea to use regression testing

for all bugs fixed. Introducing a source code control system is a key step

towards achieving higher software quality. This is true not only because of

the regression avoided when obsolete sections of code are used. It is also

a smart move because it allows differing versions of source code,

documents, models, test scripts and test data to be managed

systematically.

4.2 Automating Testing Procedures

There are different methods used for automating testing, as well as

differing degrees of complexity. The possibilities range from simple scripts

created by a tester for frequently repeated tasks, to test frameworks

facilitating unit testing, all the way to completely automated test case

generation based on a formal requirements specification.

Methodologies and Tools 1 5 9

4.2.1 Integration and Systems Testing

When looking at automation techniques, a distinction needs to be made

from the very start between integration and systems testing on the one

hand and automated unit testing on the other. Automated unit tests are

written by the developer of the respective unit. The same programming

language is generally used for both the test and the application. The test

procedures are called from within the development environment or from

the interface of a specialized testing tool or testing framework. For more

information on unit testing, see Section 4.2.3.

Integration and system tests are not necessarily created and carried out

by programmers. That is why in the past a market has sprung up offering

tools for automated testing which do not require any programming

expertise. According to a number of testing experts, this approach has

failed (among other authors, see [Bach99], [Pettichord01],

[KanerBachPetti02], and [Zambelich98]). However, many tool vendors

continue to push this approach, perhaps because so much money can be

made with it.

Should I use capture and replay?

Testing automation is frequently misunderstood to be primarily

concerned with recording user actions and playing them back using the

scripts created in the process. Test automation tool vendors are glad to

lend credence to this fiction—it is a way to pitch to decision-makers and

demonstrate well-prepared sample applications as they magically pass all

test runs with flying colors. There is a fitting description of the record/

playback myth found in [Zambelich98].

Recording and playing back user actions (Capture & Replay) was an

approach used in automated testing dating back to when testers could

only use the GUI of applications being tested to control them. That is a far

cry from what we have today—modular architectures and automated

interfaces. A program developed today that does not have an automation

interface already has major deficiencies because of this. That is why

recording and playing back user actions is only necessary and should only

be used if the application must be controlled from the GUI during the

test. Automated testing is often much simpler and more effective if the

16 0 Automating Testing Procedures

application being tested can be controlled by a second program without

requiring use of the GUI. If you are seriously considering automating

program testing in the future, you should first say farewell to the idea of

recording and playing back test scripts.

Test automation is software development!

Test automation is a programming activity. The execution of a test is

recorded in a test script. To do this it is best to use one of the scripting

languages currently available such as VBScript, JScript, Perl, Python, Rexx

or something similar. The test script is loaded either at the system level or

from a test management environment. The test management

environment must be able to administer and start test scripts and obtain

and record the results. The actions programmed in a test script are, in

general:

1. Setting up the environment needed for the test

2. Executing the test by calling and controlling the application under test

3. Evaluating and recording the result of the test

A test script thus saves you from having to complete the unchanging and

repetitious steps of setting up the necessary test environment and

evaluating the results. In the case of repeated tests a great deal can thus

be gained through automation. It is also a good idea to note down in a

script how you set up the test environment for your individual tests—so

that nothing is forgotten.

With a script that recreates the situation at the start of the testing from

stored scenarios, you can simply return to “Start” at any time. This may

necessitate copying the files you need into the appropriate directories or

deleting any remainders of previous testing or even the alteration of

system settings such as default printer, date or time of day and the like.

In the same way, the test script can spare testers the arduous task of

checking repetitious test results by, for instance, comparing certain values

in the database of the application with stored reference values or

checking the correctness of the contents of newly created files.

Methodologies and Tools 1 61

Automated
execution

Between these steps lies the actual execution of the test. When the

interface of the application under test is needed for this, a recording and

reporting tool that is started by the script will come in handy. However, a

prerequisite for this is that actions at the interface must always be the

same. Instead of setting down the required steps to be followed in a

detailed flow chart or test plan (“File Menu - > New -> Customer,

Customer No. = 4711, Customer Name = “Smith” etc), in this case an

automatic recall from previously stored user inputs is certainly better. The

tester dispenses with repetitive work that can become an onerous

burden, and errors in entering data are avoided.

Semi-automated
tests

However, where the actions that have to be carried out at the interface

are not the same in every case, it is often simpler as well as more effective

to entrust the carrying out of the actions to the tester. It is simpler

because the script of a semi-automated test does not have to be modified

to reflect each minor change in the user interface, and more effective

because differences in execution offer a chance to discover errors that do

not occur when the procedure is altered slightly. Semi-automatic tests are

particularly appropriate for checking complete use cases. In this case the

script serves as a checklist that uses Message Boxes and the like to call for

certain user actions as well as checking and recording the success or

failure of the test. The advantage of semi-automatic testing is that the

preparation and evaluation of the test with its routine questions and

schematic checks can be programmed, while the tester is guided through

the actual execution and does not overlook any steps. During the

process, the attention of the tester does not stray, something that is quite

different when the complete test is carried out automatically.

Figure 4.3 User interaction in a semi-automated test run

16 2 Automating Testing Procedures

Scripting language

Because setting up the test environment as well as evaluating and logging

the test results are tasks carried out by programmers, make sure you use

a comprehensive and commonly used programming language. This can

be a scripting language such as JavaScript (JScript) or the language you

used in developing the application. Test frameworks for automated

testing are always language-specific. As a developer you will probably be

inclined to use your favorite programming language for preparing test

scripts beyond unit testing. However, using a scripting language is often

more effective because it involves less overhead. Overall, scripting

languages are interpreted languages and less formal than compiled

languages. However, modern scripting languages are almost as powerful

as compiled languages.

Test-friendly
design

Test automation is only truly effective when testers and developers work

together. This cooperation should begin as early as possible. This is why

Section 4.3 of this chapter is dedicated to test-friendly use design. By

means of a test-friendly architecture and integration of interfaces

required for testing (hooks), test automation can make significant

contributions to increasing quality and productivity.

Because I mainly use Windows in my work, I will restrict myself to this

operation system in my description of scripting and other operating

system-related activities involved in test automation. Even if you work

with a different operating system you should easily be able to apply these

concepts and procedures.

4.2.2 Scripting under Windows

For a long time the situation for automated system-level scripting under

Windows left a lot to be desired. The only option was using MS DOS

batch files (.BAT). Compared to shell scripting on UNIX systems, scripting

on Windows just didn’t exist. Windows Scripting Host (WSH) now

provides Windows with a scripting mechanism that can carry out

common tasks such as copying files, cleaning up directories and much

more.

Methodologies and Tools 1 63

The Windows Script Host is a language-independent scripting shell. WSH

does not interpret the scripts themselves, but hands them off to a

specialized interpreter instead. Scripts written in Visual Basic Scripting

Edition (VBScript) and Java Script (JScript) are completely supported.

Compatible interpreters for other scripting languages such as Perl, TCL,

Rexx or Python can be added. Starting with Windows 98, WSH is

provided as a standard feature of the operating system. Updated versions

and detailed documentation can be downloaded at [MSScripting].

WSH uses the filename extension to determine the scripting language to

use. Files with a .VBS extension are interpreted as VBScript files and those

ending in .JS are interpreted as JScript files.

To create your first script, simply create a text file, using Notepad for

instance, and give it a .VBS or .JS filename extension, depending upon

which scripting language you want to use.

The popular Hello World! as a VBScript:

Listing 4.1 Hello World in VBScript

And here’s Hello World! in JScript:

Listing 4.2 Hello World in JScript

Scripts like this can be run by simply double-clicking on a file with a script

filename extension.

Beginning with WSH 2.0, several jobs written in different languages can

be consolidated into a single .WSF file. Job and language codes are

entered as XML tags. Several jobs in a WSF file can be bundled into a

package:

Dim WSHShell

Set WSHShell = WScript.CreateObject("WScript.Shell")

WSHShell.Popup "Hello World!"

 var WSHShell = WScript.CreateObject("WScript.Shell")

WSHShell.Popup("Hello World!")

16 4 Automating Testing Procedures

Listing 4.3 Jobs in one package

When run, the job ID is entered as a command line parameter. Assuming

that the lines above are written in a file called MultipleHello.wsf, starting

MultipleHello //job:DoneInJS would run the second job, which is

written in JScript. If several jobs are run, WSH executes them in the order

they appear.

Test Preparation

The VBScript and JScript scripting languages do not provide any methods

or procedures potentially required for setting up a test on the system

level. These tasks are delegated to objects provided by the Scripting Host.

The most important object for working with the Windows file system is

FileSystemObject. FileSystemObject is a COM object that is provided

by the run-time environment in the Windows Script Host, the Scripting

Automation Server. In a VBScript, COM objects can be created by simply

using createObject(<Servername.classname>). In JScript you can create a

new ActiveXObject with a line like:

var fso = new ActiveXObject(“Scripting.FileSystemObject“)

Scripting is the name used by the server for FileSystemObject. When the

line in Listing 4.6 is run, thefso variable provides you with a reference to

<package>

 <job id="DoneInVBS">

 <?job debug="true"?>

 <script language="VBScript">

 WScript.Echo "This is VBScript"

 </script>

 </job>

 <job id="DoneInJS">

 <?job debug="true"?>

 <script language="JScript">

 WScript.Echo("This is JScript");

 </script>

 </job>

</package>

Methodologies and Tools 1 65

FileSystemObject. Its methods can now be used for copying files, etc. For

example, the following line copies all TIF files from a test scenario 1 into

the tmp directory on the C drive:

fso.CopyFile("c:\\Tests\\Scenario1*.tif", "c:\\tmp\\")

You can just as easily copy or move complete directory trees, delete or

create files or directories, or create text files for logging test activities and

results.

The following JavaScript creates a text file that can be written and names

it testlog.txt and enters the time the test began:

Listing 4.4 Creating a log file in JScript

The procedure for preparing lines of text also shows the automatic

transformation of data types which is carried out by Jscript. The

getHours() method returns a whole number (integer) that can be used

in carrying out normal calculations. However, when such a whole number

is assigned to a text variable, JScript automatically converts it into text.

// Create FileSystemObject

var fso = new ActiveXObject("Scripting.FileSystemObject");

// Create TextStreamObject

var a = fso.CreateTextFile("c:\\testlog.txt", true);

// Variables for the line of text and time

var d, s = "Test started at: ";

var c = ":";

// Get system date

d = new Date();

// Prepare line of text

s += d.getHours() + c;

s += d.getMinutes() + c;

s += d.getSeconds() + c;

s += d.getMilliseconds();

// Write line of text

a.WriteLine(s);

// Close file

a.Close();

16 6 Automating Testing Procedures

Scripting.FileSystemObject provides the most frequently needed

functions for preparing a test and setting up the test environment. In

addition, the WScript.Network object provides access to attached

network drives and printers. Registry entries can be read and modified

with the WScript.Shell object. We also need the WScript.Shell

object to control the program being tested.

Performing the test

Windows Scripting may also be used when running tests. The program

being tested must be a working application or exist as a COM object. A

working program can be started using the run method of the

WScript.Shell object. The following sample VBScript starts the

Windows machine and sends a sequence of keystrokes to the running

program.

Listing 4.5 Sending keyboard inputs from a VBScript

// Construct shell object

Dim WSHShell

Set WSHShell = WScript.CreateObject("WScript.Shell")

// Start program

WshShell.Run "calc"

WScript.Sleep 100

// Activate program

WshShell.AppActivate "Calculator"

WScript.Sleep 100

// Emulate keyboard entry

WshShell.SendKeys "1{+}"

WScript.Sleep 500

WshShell.SendKeys "2"

WScript.Sleep 500

WshShell.SendKeys "~"

WScript.Sleep 500

WshShell.SendKeys "*3"

WScript.Sleep 500

WshShell.SendKeys "~"

WScript.Sleep 2500

Methodologies and Tools 1 67

Complete control of the program via the keyboard is useful for

automatically running tests that carry out actions on the interface of the

program. If this is not possible, an additional tool is required that can

capture and replay mouse clicks. As in the example listing above, the

SendKeys method of the Shell object can be used to send keystrokes to

the program being controlled. In addition to letters and numbers, all

function and control keys, except for the Print and PrtScreen keys, can be

sent to an application. They can also be used in combination with the

Ctrl, Alt and/or Shift keys.

Testing COM
objects

If the test can or should be run without the program interface, you need

a driver that can call the object or function being tested. If the object being

tested is a COM object, this task can be accomplished by a WSH script.

For the following example I developed a small Automation Server .dll file

called XmlTools, which contains a class called XmlString.

Among other things the XmlString class provides the methods

setContent(<Element>,<Content>), getContent(<Element>)

and countElements().

To test this class, I wrote a JavaScript combining all scripting options

mentioned previously.

<job id="Test_setContent">

<?job debug="true"?>

<script language="JScript">

// Create FileSystemObject

var fso = new ActiveXObject("Scripting.FileSystemObject")

// Create TextStream object

var a = fso.CreateTextFile("testlog.txt", true);

// Variables for the line of text and time

var d, s = "Test run on: ";

// Get system date

d = new Date();

// Prepare date

s += d.getDate() + ".";

s += (d.getMonth()+1) + ".";

s += d.getYear() + " ";

1 68 Automating Testing Procedures

Listing 4.6 Xmltest.wsf file using JavaScript

The script is saved in a .WSF file, allowing me to use the XML extension to

designate a job ID, the language to be used and to turn the Script

Debugger on and off.

s += d.getHours() + ":";

s += d.getMinutes();

// Write line of text

a.WriteLine(s);

// Create test object

var XmlString = new

ActiveXObject("XmlTools.XmlString");

XmlString.setContent("Test","This is a test");

// Check if saved correctly

if (XmlString.getContent("Test") == "This is a test")

{

 a.WriteLine("setContent and getContent ok");

}else

{

 a.WriteLine("setContent or getContent failed");

}

// Check for correct count

if (XmlString.countElements() == 1)

{

 a.WriteLine("setContent and countElements ok");

}

else

{

 a.WriteLine("setContent or countElements failed");

}

// Clean up

a.Close();

</script>

</job>

Methodologies and Tools 1 69

First, a text file is created and the date of the test is logged.

s += (d.getMonth()+1) + ".";

The getMonth() method returns a whole number between 0 and 11, so

1 must be added here.2

// Create test object

var XmlString = new ActiveXObject("XmlTools.XmlString");

XmlString.setContent("Test","This is a test");

This is where the test object is created. Finally, the setContent()

method is called to place the “This is a test” value under the “Test”

element name in the XmlString object.

if (XmlString.getContent("Test") == "This is a test")

{

 a.WriteLine("setContent and getContent ok");

}

else

{

 a.WriteLine("setContent or getContent failed");

}

The getContent() method is used to check the content of the “Test”

element by retrieving it and then comparing it to the expected result. The

results of this comparison are then recorded in the test log file. Because

two methods are participating in this test section, first setContent()

and then getContent(), we can’t know which one has failed without

additional information. But this is usually not a big problem. If an

automatic test like this fails, most of the time you can quickly determine

which of the two modules is not okay.

// Check if count is correct

if (XmlString.countElements() == 1)

{

 a.WriteLine("setContent and countElements ok");

}

2 Because the year begins with month 0 and ends with month 11 (Oh, these
programmers!).

1 70 Automating Testing Procedures

else

{

 a.WriteLine("setContent or countElements failed");

}

// Clean up

a.Close();

</script>

</job>

Furthermore, the value returned by countElements() is checked, the

log file is closed, writing the contents of the buffer to disk, and the script

and job are completed with closing tags. You can see the contents of the

test log file in Figure 4.43.

Figure 4.4 Testlog.txt

Note the doubled equals sign at the comparision point of the script. In

JScript a doubled equals sign is a comparison operator and a single equals

sign is an assignment operator.

Enter the Script
Debugger

If you should forget this, the Script Debugger is useful for finding the

mistake. <?job debug="true"?> at the beginning of the file tells the

Scripting Host to start the Script Debugger when an uncaught exception

occurs.

You already have the Script Debugger if Microsoft’s Visual Studio

development environment is installed on your computer. If not, you can

download it for free from [MSScripting].

3 As you can see in Testlog.txt writing books also involves working at strange hours

Methodologies and Tools 1 71

Figure 4.5 Script Debugger with faulty scripting code

Evaluating the Test

Automating the evaluation of test results can make testing far easier.

Nothing is more tedious than having to do things like going through the

same printouts again and again, comparing numbers and checking

records. Automatic evaluation of test results conceals the danger that

comparisons are always made with a reference value. This reference value

must be a 100% match—otherwise, the entire evaluation of the test

would no longer correct without anybody noticing it.

Checking
properties

When evaluating and recording test results you must be able to access

the values that test results are based on. As shown in the previous

example, it is no problem to query the properties of a COM object by

using a WSH script, if the object provides a get method for this. In most

cases, it is very difficult to access the values of internal object variables.

The encapsulation mechanism prevents outside access to the internal

values of an object. For this reason, the developer should always add

functions to the program or object which enable such test results to be

accessed. You can find more on this topic in the section “Test-driven

Application Development” on page 191.

Database queries
using ADO

If values important for evaluation are stored in a database, you can use an

ADO object in a WSH script to access it.

1 72 Automating Testing Procedures

Listing 4.7 Using ADO to access a database

You can see how this is done in Listing 4.7. For ADO access you need a

connection object and a RecordSet object. The connection object

initiates the connection to the OLE DB provider. This is a driver program

similar to the popular ODBC drivers. However, OLE DB technology is

newer and according to Microsoft will be replacing ODBC technology in

the long term. It hasn’t reached that point yet, but OLE DB providers are

available for most databases. In addition, an ODBC OLE DB provider is

available for ADO access to databases that do not have their own OLE DB

providers but probaby only an ODBC driver.

// Create required ADO connection and RecordSet objects

var oConn = new ActiveXObject("ADODB.Connection");

var oRS = new ActiveXObject("ADODB.Recordset");

/*

The connection string declares the OLE DB provider

and the data source

*/

var sConnString =

"Provider=vfpoledb.1;Data Source=.\\Data\\testdata.dbc";

// Open connection

oConn.Open(sConnString);

// Open RecordSet

oRS.Open(

"select * from customer "+

"where cust_id='CACTU'"

,oConn,3,3

// Get customer.company field

var sBuffer = "";

sBuffer = oRS.Fields('Company').value;

// and output

var WSHShell = WScript.CreateObject("WScript.Shell");

WSHShell.Popup(sBuffer);

// Close RecordSet

oRS.Close();

// Close connection

oConn.Close();

Methodologies and Tools 1 73

When the connection to the data source is open, you can open the

RecordSet by using an SQL statement which specifies the connection to

be used and thus gain access to the data you need to evaluate test results.

Working with ADO objects in a Windows script is relatively

uncomplicated. However, you still need a basic knowledge of SQL and

access rights to the database to be able to evaluate tests by accessing data

directly.

Data State

One difficulty in analyzing automated (and manual) tests is that there is

often no way for you to know what things to check. There’s more to a

best-case test run than having it work perfectly and produce the desired

results. It is also important that such a test run has no undesirable side

effects. As we saw in the case study at the beginning of this chapter,

printing out a delivery note should trigger a stock transaction with the

implicit requirement being that all other data remain unchanged. A bug in

printing delivery notes that causes a customer’s address to be changed is

probably not very easy to discover, because you would never anticipate a

connection here and set up a test case for it.

How can such unanticipated side effects be discovered anyway? If the

bug shows up somewhere in the data, you can track it down by

comparing the state of the tested data with a data state that was backed

up and verified beforehand. The data state is created by saving the

current values for all data needed by the program

A saved and verified data state is needed to compare the data state after

a test. This means that the data state matching the expected result must

be accessible. Such a data state can be created manually or saved once a

test of the program is completed successfully. Comparing saved data

states is also particularly useful for automating the analysis of regression

tests, because regression tests are typically performed after it is already

possible to run the program successfully.

The data state should be saved as an XML file. XML provides a data

format that contains both the contents of data and its structure. This

allows visualization of component-container relationships on the object

level and parent-child relationships in relational databases.

1 74 Automating Testing Procedures

Many databases today can return query results in XML format without

having to rely on a separate program to handle the conversion. A special

program to compare the current data state with the saved data state is

normally still required, because all values that depend on the system

clock cannot be directly compared with one another.

Figure 4.6 Sample data state

In Figure 4.6 you can see a part of the resulting data state after a test was

run using the highest possible values. The data state saved here is in XML

format and contains data from the tables of a relational database. The

first level below the “snapshot” root-level element is composed of the

RecordSet. This is called AWB in this example. The second level consists

of records from the recordset. And finally, the third level contains the

fields for each record with the field names from the table used as the

names for the elements.

Using a script such a data snapshot can be created and saved at any point

while running the test. The next time the test is run you compare the

current data state with the saved snapshot. The comparison should

Methodologies and Tools 1 75

actually take place on the field level so that you can determine exactly

which table, record and field has values which deviate from the saved

value if there are any discrepancies.

Tools exist that create, save and compare data state files. With a little

programming experience you can create such a data state tool on your

own and place it in your testing toolbox.

Masked file comparisons

Another useful tool would be a maskable DIFF utility. This means a file

comparison tool that you can tell which part of the file to ignore when

carrying out a comparison. Files in text format are often output during a

test run. These outputs should not vary between two runs of the same

test—in reality they do, but only in the parts of the file containing the

system date and time. A file comparison utility can be used to assign

comparison masks that hide certain parts (date and time information) of

an output text file. Text outputs of this kind could very well be used for

automating the analysis of test runs.

On my search for such a tool I have come across various versions of DIFF

for Unix/Linux and MS Windows and enhancements for WinDiff (see

section 4.4, “Tools”). I couldn’t find a maskable version of DIFF. Perhaps

this gap has already been filled—it’s likely that you’ll have to write your

own file comparison tool.

XML Diff

In addition to tools for text file comparison, there are now programs that

can compare XML files and are aware of XML elements. To provide an

illustration of what this means, let’s have another look at the previous

data state example. You can see that XML elements corresponding to the

fields in individual records are not sorted. The order simply reflects the

physical sequence of the fields in the record. But the physical sequence of

the fields in a record is not a factor to be considered during a comparison.

Using our example, this means that if, for some reason, in a new data

state the “Awb_TotDwg” field appears before the the “Awb_TotRwg” field

instead of after it, then the comparison of the data state with the saved

1 76 Automating Testing Procedures

version should not fail due to this change in sequence. What’s important

here are the contents of the fields, not their order in the record.

A program that compares XML files should also include an option for

ignoring such changes in sequence on the same structural level. Even

missing or “white space” between individual elements should be ignored,

as well as carriage returns and interspersed tabs.

The last thing to ask for in an XML Diff tool used for automating test

analysis would be the possibility of hiding individual elements from the

comparison—for the same reasons stated previously for file comparisons.

Data Integrity Tests

Checking data integrity can be easily automated by a program as well. In

addition to referencial integrity, checks of fields and records can also be

carried out. Rules for validating the saved data by field or record can be

created in many databases. The database checks these rules before saving

and refuses to save data that contradict these rules.

Rules for field validation check the validity of each field. Typical examples

are for date fields whose values may precede a certain starting date or

fields containing prices that may not be less than zero. Rules for record

validation check the validity of each record. Record validation is always

important when the valid values for the fields in a record are

interdependent. An example of this would be an order item where the

discount and minimum quantity surcharge exclude one another.

This is also a way of preventing records from being created that have

invalid references to other records or for preventing records from being

deleted that are referenced by other records. This is prevented by the

rules imposed to maintain referential integrity.

The rules set up in the database may be faulty or incomplete. So it makes

sense to check the integrity of the data by using a separate program.

Reuse

There are some passages in the previous XmlTest.wsf sample script which

are independent of the object being tested. Wherever possible, the parts

of the script used for creating test log files and for logging results should

Methodologies and Tools 1 77

be made reusable. These tasks can be moved to a separate script that can

be embedded into a WSF file using a line like this:

<script language="JScript" src="createTestlog.js"/>

A script embedded in this way is run when the main script is interpreted.

Embedding script files like this allows you to add additional functions to

your main script. In the following example two functions from an

embedded JScript are called in one VBScript.

Listing 4.8 The controlling VBScript

Listing 4.9 The JScript with functions

Scripting languages supported by Windows Scripting Host can thus be

combined. A single job in a .WSF file can be composed of entirely

different scripts in different languages. Scripting development on

Windows has become a very good option for completely or partially

automating tests. But you should be aware that this has to do with

software development project. If you want to do more than just

<job id="HelloGoodBye">

<script language="JScript" src="WorldFunctions.js"/>

<script language="VBScript">

 hello()

 GoodBye()

</script>

</job>

function hello()

{

 var WSHShell = WScript.CreateObject("WScript.Shell")

 WSHShell.Popup("Hello!")

}

function GoodBye()

{

 var WSHShell = WScript.CreateObject("WScript.Shell")

 WSHShell.Popup("... see you later!")

}

1 78 Automating Testing Procedures

automate a testing task now and then, you should plan this out carefully.

Test support libraries should be created and maintained for use across all

parts of the projects and the infrastructure of your test environment

should be set up with the entire project in mind. This involves

considerations about where and when individual test cases are filed,

where the test log files go, how to determine which tests were last carried

out on which version, etc.

Test Cases and Test Suites

One way to organize individual test cases in WSH scripts is to create a job

for each test case in a WSF file. When several test cases are joined

together this combination is called a test suite. So, a WSF file containing

several test cases makes up a test suite. If the test cases in the suite build

upon one another, meaning that if the following test expects the test

object to be in the state that was produced by the previous test, the test

suite should be regarded as a unit, even when in reality it consists of

individual test cases. You can no longer run individual test cases in such a

test suite, because the test object is only in its proper state when all

previous tests in the suite have been run. When possible, try to avoid

suites which combine linked tests and initialize each test case one at a

time, to also make single tests repeatable.

There is only one job in the previous XmlTest.wsf example and this is:

<job id="Test_setContent">

even if several values are being checked. This job should afterwards be

regarded as a test case and not as a suite made up of a setContent() test

case followed by getContent() and countElements() test cases.

Scripting Alternatives

If in real life you don’t just test software but also write it, then you

probably prefer to use a specific programming language in a specific

development environment, and even use a favorite editor. So why learn

an extra scripting language to automate integration and system tests? You

can use one of the language-specific test frameworks for unit testing that

I will describe in the next section. When doing unit testing there is often

Methodologies and Tools 1 79

no need to make extensive preparations at the system level. Analyses are

also frequently limited to checking the return values of a method call.

The power of scripting languages lies in their simplicity and above all their

easy use. Nothing has to be compiled, most scripting langauges are

interpreted and they are not strongly typed. This means that you simply

declare a variable and give it a value, setting its type. Type transformations

are often carried out automatically. This is a nightmare for developers who

want every last bit under their control, but scripting languages are more

suitable than compiled languages for automating test runs.

Using a single tool vendor’s proprietary scripting language is not a viable

option. Many vendors still base their testing tool on a “capture & replay”

feature. A vendor-specific scripting language can be used to add process

control, error and exception handling and similar things to the recorded

script. But by doing this they are turning testing on its head. The

interface-oriented “capture & replay” script should not control the test

and provide additional scripting options. Instead, a scripting language

that is not vendor-specific should take over control of the test and if

necessary call a “capture & replay” tool.

4.2.3 Unit Test Frameworks

Unit tests are conducted by the software developers themselves. If

testing processes can be automated, developers naturally fall back on the

programming language in which the application itself is programmed.

Using this procedure is tempting for unit tests since the unit being tested

(class, function, procedure) must be embedded in a run-time system.

Calling a single program function on the operating system level or from a

script is not all that easy. Only a few development environments allow

you to work directly and interactively with objects, functions, and

procedures. In most cases, for testing to take place, the function being

tested must be compiled with a test driver program in a testing

environment. The testing environment starts the test and then invokes

the test driver. In addition, the testing environment records the results of

the test. The test driver invokes the units to be tested with all the variants

and parameters that constitute the test case.

1 80 Automating Testing Procedures

Figure 4.7 Sequence of calls in automated unit testing

The flowchart in Figure 4.7 illustrates the sequence normally used in an

automated unit test. The test driver contains the actual test cases in the

form of functions or methods that can be called. For example, the

“testXYZ()” function represents a test case. The test case consists of calling

one or more functions, procedures, or methods of the unit being tested.

The results returned are transferred from the test driver to the test

environment for checking. The test environment can then record these

results.

Test drivers are written by the unit tester—that is, in most cases by the

developer of the unit being tested. This leaves the test environment

universally valid and usable for any kind of project. In addition to

supporting embedded test drivers, most environments can also handle

the creation of test suites, i.e. by combining test cases into a group that

can then run at the same time.

eXtreme testing With the rise of the eXtreme Programming movement, automated unit

testing has gained a lot of attention in the developer community. It’s true

that there have been many previous attempts to automate testing and to

get developers to conduct unit tests on a regular basis. But it was eXtreme

Test environment Test driver Unit_being_tested

testXYZ()

doThis()

doThat()

checkResult()

checkResult()

Methodologies and Tools 1 81

Programming (XP) that first made automated unit testing a key element in

programming work. In an XP project, developers write tests before

writing the actual method code. In this approach, unit tests are essentially

the same as the final specification.

The first person to use this approach was Kent Beck, who put together a

test framework for Smalltalk programs [Testframe]. The JUnit [JUnit] test

framework for Java unit testing developed by Kent Beck and Erich

Gamma has since been adapted by other developers for use with

additional programming languages.

An up-to-date list of free test frameworks is available for download at

[xProgramming].

A DUnit Example

A test framework provides classes that can be used to create unit tests

and test suites. The tests are processed by a TestRunner object. Test

results are separated into successful tests, failures (deviation from

expected and actual result) and errors (unanticipated errors during

testing). A GUI is used to display and manage results in the test

framework.

XUnitAll XUnit test frameworks are structured like the original JUnit

framework. X is the language identifier, thus “J” for Java, “C” for C and

“Cpp” for C++ and so on. Figure 4.6 shows the graphical interface for the

DUnit Delphi test framework. The test hierarchy can be seen in the top

section of the window. Test cases (e.g. TTestCaseFirst) and test suites (e.g.

XMLString Tests) can be included in the test project. If the second level is

a test suite, any number of test cases may be grouped within it. A test

case can comprise as many testing methods as desired. In this example,

the three test methods of the test case are “testFirst”, “testSecond” and

“testThird.” Any of the levels in the test hierarchy can be included or

excluded. In the next test run only selected tests are carried out.

Test results are displayed in the bottom section of the window. The types

of results are “failures” and “errors.”

1 82 Automating Testing Procedures

Figure 4.8 DUnit TestRunner interface

Test frameworks can be easily integrated because they are written for

specific programming languages and development environments. The

following examples use Delphi and DUnit code. Since all adaptations of

XUnit are highly similar, transferring them into your language should be

easy.

First, a separate project for unit testing is created. The test framework is

integrated into the project as a unit or package. Naturally, this includes

every unit or package containing finished unit tests.

Methodologies and Tools 1 83

Listing 4.10 The uses clause integrates all required units in Pascal.

All test cases used are derived from the test case class provided by the

framework.

Listing 4.11 Declaring a specific test case in DUnit

The TTestCase class contains two virtual methods called SetUp and

TearDown. For each test case, these methods are overwritten and are

used to make the necessary preparations for a test run. In most cases, an

object of the class being tested is created in the SetUp method and

cleared by the TearDown method.

program Project1Test;

uses

 Forms,

 Test framework,

 GUITestRunner,

 Project1Testcases in 'Project1Testcases.pas',

 XMLStringTestcases in 'XMLStringTestcases.pas';

type

 TTestXmlString = class(TTestCase)

 private

 TestObject : TXMLString;

 protected

 procedure SetUp; override;

 procedure TearDown; override;

 published

 procedure testSetContent;

 procedure testGetContent;

 end;

1 84 Automating Testing Procedures

Listing 4.12 SeatUp and TearDown methods for each test case

The allocation of a new test case to a test suite is handled differently

depending upon options available in the language used. In Delphi, this

takes place in the initialization segment of the unit.

Listing 4.13 Assigning to a test suite

Finally, testing methods are populated for each test case. This is where

the actual test code is. In the following example, the

setContentAsString method of the test object is called using an empty

string as its first parameter. The method expects the name of an element

here and it cannot be empty. If it is empty, an exception is triggered by

the method. The calling method, here the test method from the

TtestXmlString test case, must catch and handle the exception. As shown

in the example, this is done in Delphi using a try ... except block. If

the exception is not caught, we have an “error” result type (see

Figure 4.8), meaning that the test has failed, even though the method

being tested behaved properly.

procedure TTestXmlString.SetUp;
begin
 TestObject := TXMLString.Create;
end;
procedure TTestXmlString.TearDown;
begin
 TestObject.free;
end;

initialization
begin
 Test-Framework.RegisterTest('XMLString Tests',
 TTestXmlString.suite);
end;

procedure TTestXmlString.testSetContent;
begin
...
 // Error Case, no name specified

Methodologies and Tools 1 85

Listing 4.14 Exception handling in a test case

Checking the anticipated results occurs by calling the check... or

assert... methods inherited from the test case class.

Advantages

Developers often search for a quick and easy way of testing freshly

programmed functions. To do this, first create an object in the class that

provides the function. Then, use a snippet of some sort of source code that

calls the function. And finally, review the results. Because the infrastructure

for this is not provided in most development environments, it is usually left

out; the new functionality is tested only in conjunction with the use of this

class. A test framework provides a ready-made infrastructure for unit

testing.

If, as required by eXtreme Programming, the unit tests are written first and

only then is the tested function coded, the function itself is viewed from

a different perspective, from its interface and/or the specification. Unit

tests represent the current status of the specification. The developer thinks

about the specification first and only afterwards about its implementation.

 try
 TestObject.SetContentAsString('','Testtext');

 except

 on e: EXMLNoElementName do
begin

 check(TestObject.getContentAsString('Testelement1')

 = 'Testtext');
 check(TestObject.getContentAsString('Testelement2')

 = '');

end;
 on e: Exception do fail('Unexpected exception type: '

 + e.ClassName);

end;
end;

1 86 Automating Testing Procedures

The accumulated unit tests provide a sense of security should changes be

made.4 A function’s internal structure can be revised and worked over as

much as needed as long as its interface remains constant. Refactoring,

continuous maintenance of and improvements to the structure of the

source code, would be a very risky exercise without automated regression

tests. Where in the unit hierarchy these regression tests are to take place

depends on risk assessments, degree of reuse, test coverage through

intensive usage of a function, and so on.

Limitations

Other methods from the same test object are often used to check results

of unit testing. For this reason, it is not always clear what is actually being

tested. In automated unit testing, far more effort is needed to satisfy the

expectation that you are not relying on test object output when

determining test results.

The amount of effort also increases considerably if external data is

involved. External data must then be provided in a variety of potential

scenarios with strongly divergent content. Plus, external test data must be

maintained. If there is a change to the data structure, all external data

scenarios must be modified to reflect this, otherwise there is no way that

unit testing can be performed without errors. This is why it is highly

advisable to avoid using external data wherever possible in unit testing, to

have the test create the data and limit its use to a standard scenario.

The same is true for all required system resources. The developer’s

computer is rarely configured exactly like the target computer—if that

decision has even been made yet. The developer’s computer

configuration may also be modified at one point or other. Who can claim

to always bear in mind that a unit test uses specifically this or that temp

directory? If the directory is then removed during the next big clean-up,

and the test cycle suddenly fails to work, then a lot of time is wasting

looking for the reason why.

Developers are often pressed for time. That is why unit testing is almost

never conducted beyond the best case and one or two error cases. Once

4 However, this sense of security can also be deceptive.

Methodologies and Tools 1 87

they are ready to be performed, the resulting tests normally catch only a

few new errors. You quickly end up with a large number of fully

automated, executed tests; unfortunately, they must be maintained and

are mostly of little help. On the other hand, automated unit tests are

generated without giving consideration to risk assessment. Many a Junit

fan preaches test cases even for set- and get-methods that do nothing but

conduct a value allocation.

Alternatives to Automated Unit Testing

Interactive unit tests, embedded tests, and testing by using constitute

alternatives to automated unit testing. Can your development

environment call a single function or method interactively or catch and

provide a graphical display of a return value? If so, you should take

advantage of this opportunity to perform interactive unit testing. If your

development environment cannot do this, you may want to use wizards

to quickly devise a test application that can help enter parameter values,

call functions or methods, and display return values.5

Figure 4.9 Utility program for interactive unit testing

Figure 4.9 shows an example of a utility program for interactive unit

testing that allows files to be written to various media (diskette, hard

drive, network device, etc.) with simultaneous space availability

verification, non-compulsory diskette formatting and other functions.

5 If neither of these options are available to you, your development environment
doubtlessly has an abundance of other features going for it.

1 88 Automating Testing Procedures

Theoretically, the number of test cases which can be derived goes into the

hundreds. Not only must varying types of media be considered, but also

the various operating systems, marginal cases, whether sufficient space is

still available for the first copied file and directory entry but not for the

next one, access rights, path expressions in UNC notation (Universal

Naming Convention: \\Server\Share) or the drive letter, and so on. Nor

can all these system conditions be ensured for the foreseeable future

(Will the target computer still be networked? Does the test computer

always have a B: drive?). This is compounded by the fact that the user

interface must also be used with the system dialog when formatting

floppies.

Interactive unit
testing

Thus, the example above shows that automated unit testing is unfeasible,

even for this relatively simple use case.6 In such settings, there are

definite advantages to performing semi-automated interactive testing for

Rapid Application Testing. You should combine interactive unit testing

with embedded tests in cases like these (see Design by Contract below),

bearing in mind that certain subfeatures are automatically tested with the

key features.

Conclusions

It’s all in the mix “There is no silver bullet!”, wrote Frederick P. Brooks, Jr. in “The Mythical

Man-Month” [Brooks95]. What he meant is that there is no “miracle”

methodology that can provide a solution to every problem. The same

holds true for automated unit testing and interactive testing, embedded

tests, and testing by using. The key to a solution lies in using a mix of

simpler but more effective techniques. Collaboration between

developers and testers can yield highly effective results, particularly when

it comes to unit testing. Here, integration and system testing tools can

perhaps be useful in unit testing as well. By the same token, developers

surely have a few tricks up their sleeve that might come in handy for

testers.

6 If only interactive unit testing was as easy as fanatical purveyors of eXtreme Testing
would have them be.

Methodologies and Tools 1 89

Decoupling unitsConducting unit testing with the complete application only, however, is

not an option. If you’re having to start the entire application every time

you test individual units, you should try to further decouple the

individual parts of the application. In the latter stages of the development

process, the presence of units that were inadequately encapsulated

earlier on can lead to a situation in which the application can be tested

from that point forward only as a “whole”— because somehow

“everything” is implicated. When designing applications, bear in mind the

importance of greater encapsulation; this will make your life easier during

testing. Alternatively, tell your developers that they should provide unit

tests for each unit they release. This can lead even the most prolix of

software developers to start thinking in a terms of greater encapsulation.

4.2.4 Application Interface Testing

Testing an application interface should not be confused with functional

tests, in which the application interface is used simply to control a

procedure. Application interface tests are less concerned with flows than

they are with determining the robustness of the interface. Some basic

technical knowledge goes a long way when it comes to understanding the

importance of GUI testing.

Event control

Nowadays graphic program interfaces are built with the help of event-

driven programming. When the user clicks on a button, an event is

triggered within the program. The developer can respond to this event by

linking the event with a button’s method. This link is already hard-wired

in some development environments. The code contained in the linked

method is run every time the event occurs (event handling). The most

prevalent interface errors are attributable to event handling that is

successful in most settings but fails in certain others. The developer needs

to consider these exceptions when handling a given event. Settings in

which three or more “ifs” occur can easily confuse the software, inducing

an erroneous program response.

19 0 Automating Testing Procedures

An example I would like to illustrate this point with a brief example:

Figure 4.10 Excerpt from a ship-to address dialog

An excerpt from a dialog for gathering address information is shown in

Figure 4.10. In the normal procedure, the “Consignee” address is

displayed after a key is entered in the “Code” field. The Ship-to page is

not yet displayed at this point. Only when the user activates the “Use

different Ship-to address” checkbox is the Ship-to page displayed,

allowing the ship-to address to be modified. An error would have

occurred if a) a new entry was active b) the cursor was inadvertently

placed in the “Code” field after an address was called and the “Ship-to”

page was displayed, and if the user then c) clicked on the Ship-to tab.

The error occurred in handling the “Code” field’s “OnExit” event. Here,

the software failed to detect an exception when the record was

reentered. As a result, the “Consignee” data record was read in anew and

the “Ship-to” address, which may already have been edited, disappeared.

The most prevalent events of this type include "OnExit,” “OnEntry,”

“Click,” and “KeyPress.” Some developers deal with these events by

writing several pages of processing code. Inasmuch as this code is also

required at a later time by other events, several events are simply linked

to the same method or the method is called by the program. This and

other similar horrors happen without the event ever occurring explicitly.

Nor are development environments totally immune to error. For

Methodologies and Tools 1 91

instance, in certain settings the program might call a method linked to an

“OnExit” event for an entry field either twice or not at all.

Error diffusion

What does this example show? In my view, it elucidates four key points:

1. In addition to synchronization and display errors, combinations of

events during interface development (regardless of their degree of

complexity) give rise to the most egregious problems. The errors they

cause are scattered randomly throughout the program and often lie

outside normal procedure paths. The program responds erroneously

only when certain sets of conditions coincide.

2. You can find these bugs by using planned test cases. If the situations

that cause the program to act incorrectly could be anticipated, the bugs

would probably be caught. The most productive technique is to click or

type “all over the place” without any regard for processes while

consciously recording and analyzing all points where the program

diverges from what is considered correct behavior. This is why tests are

so difficult to automate properly.

3. Having a firm grasp of a program’s internal processes greatly simplifies

the task of ferreting out, isolating and describing any errors. If you

know that successful execution of a broad range of code snippets

depends upon whether you exit an input box with the return key, the

tab key or a mouse click, it’s much easier to reproduce and isolate an

error that you happen upon.

4. The approach to programming and application design adopated plays a

pivotal role in the common GUI errors described here. This is why tests

on up and running graphic interfaces are “too little too late.”

Standardized, mandatory programming guidelines do far more for

quality assurance than any testing of finished software.

4.3 Test-driven Application Development

Why should developers want to make life easier for testers? Because

developers are themselves testers, because testers make a positive

contribution to developers’ work, because the whole project team wants

19 2 Test-driven Application Development

to win the big game, because if testers have an easier time of it,

debugging and even development are simplified, and so on.

Although there are at least a dozen or more good reasons for allowing for

testing already in the application design phase, one of these reasons

crowds all others off the playing field: money. In May, 2002 the National

Institute of Standards and Technology released a study on the economic

consequences of inadequate software testing [NIST] showing that

software design errors, bugs, and other product defects cost $59.5 billion

annually in the USA alone. The authors of the study assign a fair amount

of blame for these economic losses to the vendors of software testing

tools. The study advocates the institution of binding software testing

standards, which ideally would be monitored by a federal software

quality assurance agency. Would this help?

Paying attention
to testability

The software industry likes to draw comparisons between itself and other

sectors, particularly the auto industry7. But when it comes to testability,

software products clearly lag far behind automobiles. While the

diagnostic options and special tools that make life easier for service

technicians are taken into account in the design of a new car, many

software vendors pay precious little attention to the needs of their service

staffs (testers, support staff, administrators) and customers. As a result,

their work still must be performed manually, since most software

products provide little in the way of diagnostic options, technical

documentation, self-testing routines, online help or proprietary data

formats.

Test-driven
application

development

This is mainly the province of software designers and architects, who

should be endowing software with greater testability in the software

architecture stage. If an application misbehaves, even the best testing

tool in the world won’t be able to fix it. The following elements come into

play in test-driven application development:

� Ensuring the complete application can be operated without the

interface

� Integrating functions that can supply a testing tool or script with the

requisite information during run time

7 If Microsoft built cars…

Methodologies and Tools 1 93

� Providing self-tests during operation

� Providing a debugging mode with advanced event logging

� Using conventional data formats that are understood by a wide variety

of tools

� Separating the application into components that communicate with

one another using documented interfaces

� Providing add-ins and hooks for diagnostic tools for monitoring

program operations

� Systematically prioritizing testability and developing innovative ways

of achieving this.

4.3.1 Separation of Interface and Implementation

One design decision that can streamline the process of software testing

and development is the clear separation of interface from

implementation. This makes it possible to completely test

implementation functions using code. The interface then only needs to

be tested for proper display, workflow and the complex event control

errors mentioned previously.

When xUnit testing frameworks (see unit testing frameworks) are used,

the separation of interface and implementation basically becomes

mandatory, because such frameworks provide objects, call the methods

being tested and evaluate the results. Launching an application (normally

a prerequisite for correctly drawing an interface) and then controlling the

application using a capture & replay tool is scarcely possible within such a

framework.

Inasmuch as program functionality tests that employ the program’s

interface are in fact integration tests, it follows that unit tests cannot be

performed without separating the interface and the implementation.

Programming
guidelines

The practice of separating interface from implementation unfortunately

has not yet found broad acceptance among many developers, nor have

development environment vendors been much help in this arena. It’s

generally a relatively simple matter to cobble together an application by

conjuring it into graphical existence with a grid and a handful of entry

19 4 Test-driven Application Development

fields, buttons and checkboxes that are then yoked to a database. But as

soon as the application grows more complex, the simple implementation

of the base application (which is of course retained in all instances)

crumbles before your eyes. Coherent unit testing simply cannot be

performed on an application design distributed across hundreds of Click,

OnExit and LostFocus events. In such settings, quality assurance involves

setting clear, timely programming guidelines which must be checked

during review sessions.

Figure 4.11 Classic 3-layer separation

Figure 4.11 shows the classic 3-tier separation of interface, processing

logic, and data storage. Enabling communication between individual

subsystems using XML structures is advantantageous from the standpoint

of system architecture in that subsystems become more strongly

decoupled. XML communication constitutes the optimal solution for

automated testing because XML structures are composed of plain text

only, which allows them to be scrutinized, saved and edited. The

anticipated communication content can be compared with the actual

content using XML DIFF tools. Standards such as SOAP (Simple Object

Access Protocol), WSDL (Web Services Description Language) and UDDI

(Universal Description, Discovery and Integration) are now available for

such XML-based communication. Below you will find a case study on the

use of SOAP, WSDL and UDDI at a financial computer center

[DostalRieck]. But the use of XML for communication on a lesser scale,

such as between the modules of an application also makes good sense.

Test adapter If you are unable or don’t want to port everything over to Web Services

right away, a clean separation of interface and implementation still

enables you to interpose a test adapter between the various subsystems

for testing purposes.

«subsystem»
interface

«subsystem»
processing

logic

«subsystem»
data storageXML XML

Methodologies and Tools 1 95

Figure 4.12 Inserted test adapter

Figure 4.12 shows such an adapter, which during the testing phase routes

communication between interface and implementation via an attached

testing tool. The adapter has two interfaces. It supplies the

implementation interface with an interface subsystem (or a portion of it),

while at the same time acting as an interface to the implementation

subsystem. The communication data relevant to the test is directed to the

testing tool between these two interface views. Commands that control

processing can also be sent from the testing tool to the adapter. The

interface subsystem can thus be omitted from the test if it is not needed.

4.3.2 Handling Printouts

Hard copy reports created by a report generator provide a special

example of separating interface from implementation concerns. Report

generators nowadays offer a wide range of options for making selections

and doing calculations based on formulas which use their own

programming language within the report generator. These report

generator programming options should not be used to prepare reports

based on underlying, normalized8 basic data. Instead, the data for the

report should be obtained from the processing layer and placed in

temporary tables. This can then be denormalized (i.e. categorized by

8 Normalizing data involves eliminating redundancy from the data. Certain set
procedures are used for this.

«subsystem»
interface

«subsystem»
processing

logic

«subsystem»
data storage

ad
ap

te
r

«utility»
testing tool

19 6 Test-driven Application Development

content) and can also be redundant if necessary. Machine-specific data

types can be formatted for printing. Whether all data is completely

denormalized of if, for instance two temporary tables (separated by

header and item information) are created for a typical voucher structure,

is not an overriding concern.

Checking the
layout

The design decision to always output reports from temporary tables

means that manual test evaluations can be limited to checking the print

layout. The correctness of the output results can then be checked

automatically by analyzing the temporary tables.9

Instead of temporary tables, you can use XML tables for the output data

and XSL stylesheets for the layout. This solution is best for documents

that are to be printed, but is less suitable for extremely long reports

because the resulting XML file quickly becomes unmanageably large. The

use of XML and XSL for reporting and printing documents is still in its

infancy. Users currently have to develop their own general printing

engine for XML data.

Another option is to use a printer driver that can create PDF files

(Adobe’s Portable Document Format). In some instances this can cut

down on paper consumption and simplify the archiving of test results.

PDF printer drivers are available from [Zeon]. The latest version of

Acrobat Reader is available for free from [Adobe].

4.3.3 Interface-centric design

“Program to an interface, not an implementation” has become a

watchword of object-oriented application design—and with good reason.

For the more your classes are decoupled from your application and the

less a class “knows” about the implementation of other classes, the more

options you will have for testing such classes. Even in the early stages of

software development, when some classes are still unavailable, the

missing classes or the objects instantiated from them must often be

replaced with placeholders called stubs. Outwardly a placeholder

provides the interface to the class it represents. An implementation that

9 One advantage of denormalized data is that users generally have an easier time
dealing with it. Trained users can create their own reports from the data provided
in the temporary tables.

Methodologies and Tools 1 97

references a class to be tested does not even exist in this case. In order to

use placeholders it is therefore absolutely necessary that classes

communicate with one another via their defined interfaces only.

Unit testing supported by testing frameworks or testing codes (see

below) constitutes black box testing in every instance. Such testing

accesses the unit to be tested via its public interface only. If this does not

occur, each refactoring operation within the unit will almost always result

in a test that can no longer be run, meaning the test must also be

modified.

ModularizingIn application design, interface-centric design and modularization

basically amount to the same thing. Applications should be based on

components, regardless of whether they are called COM objects, Beans

or (as more recently) .NET assemblies. Components can be tested

separately. However, this does not mean that an application composed of

a constellation of individually tested components will necessarily work as

a whole. To ensure that the application does in fact work, tests are still

needed that encompass the entire processing chain, from the interface

through the network to the different application layers, up to and

including data management and back A testing chain that tests each

component individually in advance will be far less prone to error.

4.3.4 Design by Contract

As described in the section “Embedded Testing” on page 47, the “Eiffel”

programming language offers a design by contract approach that contains

language constructs for testing preconditions, postconditions and

invariant (always applicable) conditions for classes and class methods. If

you program in Eiffel, you are certainly familiar with the use of the terms

“require”, “ensure” and “invariant” as they are used to define pre-, post-,

and invariant conditions.

If you program in another language, you can emulate design by contract

by using ASSERT and IF statements.

Assert statements
ASSERT !empty(This.cAlias) ;

 MESSAGE "XmlRecordSet._load: No Alias set!"

1 98 Test-driven Application Development

ASSERT statements check a Boolean expression and output a message if

this expression is returned as FALSE. In the example given above, the

cAlias class variable is checked to ensure that it is not empty. If it is found

to be empty, a message is displayed indicating that no alias has been

defined.

An IF statement can be used to achieve almost the same behavior:

The differences between these two kinds of checks vary from language to

language. However, a common property of all ASSERT implementations is

that ASSERT statements can be suppressed in compiled code and ignored

outside of the development environment.

An example in MS
Visual FoxPro

ASSERTs in Microsoft Visual FoxPro stop the program after unsuccessful

tests and offer the developer the option of switching to debugging mode.

But because this behavior is only valid in the development environment,

ASSERT statements are automatically ignored in the run-time

environment. If the bugs caught by ASSERT statements in the

development phase can also occur in the run-time version of the code, an

additional IF statement is always required.

An example in
Delphi

ASSERTs are integrated into the exception handling methods of other

languages such as Delphi. A call of the ASSERT function in Delphi

generates an exception when the Boolean statement transferred is

assessed as FALSE. These exceptions can be intercepted and handled like

other exceptions. If you want the program to stop in the development

environment when an assertion fails, you first have to set Delphi’s

debugger options to interrupt a program when exceptions in Delphi

occur.

IF empty(This.cAlias)

ERROR "XmlRecordSet._load: Alias not set!"

RETURN .FALSE.

ENDIF

Methodologies and Tools 1 99

Listing 4.15 Assert statements in Delphi trigger exceptions.

When setting ASSERTs in languages that act similar to the Delphi example

above, you should protect each call of a function, procedure or method

using try ... except. Only by doing this can you ensure that your

program will successfully catch built-in run-time tests.

Preconditions

Use ASSERT statements to check all preconditions that must be met for

each method. Apart from serving your own testing purposes, an

additional benefit of doing this is that all preconditions for the method

are documented.

Both ASSERTs and IF statements should be used to ensure that

parameters have been passed correctly to a public method. Checking

passed parameters is a mandatory task of every public method and should

therefore not be deactivated during run time, as is usually done when

ASSERTs are used.

The same holds true when an object must be in a defined state in order to

carry out a certain method. If a voucher must be completed to printing,

do not check this with ASSERTs when the print() method is called.

begin

 try

 doSomething;

 except

 application.MessageBox(

 'It didn’t work!','Too bad',0);

 end;

end;

...

procedure TMyClass.doSomething;

begin

 assert(Weekday() <> ‘Sunday’,'Today is a day of

rest.');

end;

20 0 Test-driven Application Development

ASSERTs check preconditions that indicate an error in the program when

preconditions are not met. In doing this the program of course must also

be able to respond to any unanticipated errors that may arise. In the code

examples given above, the program making the call must interpret a

return value of .FALSE. as an error and catch and appropriately handle the

exception thrown. If, having detected all bugs during the development

phase, you are absolutely certain that the run-time error has been

eliminated and will not recur, you can forego these additional checks.

However, it is still advisable to leave ASSERT statements in the program

outside of the development environment, even during run time . Bear in

mind that there is a trade-off between achieving optimal operational

integrity and losses in productivity engendered by numerous additional

follow-up checks.

Postconditions

Except in the case of Eiffel, assertions are always used to check

postconditions. While a method cannot be assigned the task of correctly

passing parameters (this task falls to the method making the call), the

actual idea behind this method is to always get a correct return value or,

more generally, adhering to the postconditions specified. Anything that

deviates from this can only be a bug in the program.

Postconditions are checked before the return from the method. If the

method returns a calculated value, the latter can be verified by carrying

out a reverse calculation. When data is changed, the data state can be

checked using an alternative method or an access check.

Postconditions are preconditions for subsequent dependent functions.

Ensure uses a somewhat different technique by consistently using a

function in a precondition in place of ASSERTs. The function doesn’t just

passively assert that something is true so that it will work. It actively

ensures this and assigns objects to do it. The source code then looks

something like Listing 4.16.

Methodologies and Tools 2 0 1

Listing 4.16 Using ensure to ensure the preconditions

This technique has several advantages over conventional ASSERT
techniques. Programming for purposes of creating and checking a state
used by several functions needs to be performed in one place only. To test
the startPreview() function, only those constituents of the application
have to be started that ensure the availability of ReportingDate and the
database. Any changes that occur in database availability and the criteria
used for checking likewise need to be realized in one place only.

Invariants

There are frequently many places in the source code where a state is
checked, but the alternative state is not. For example, if the value of
variable i resulting from previous processing can only be 1 or 2, hooks are
frequently used with IF statements such as:

The fact that i = 2 must always be true in the ELSE branch is termed an
internal invariant of the method. Such internal invariants can be very
easily checked using short ASSERTs:

Listing 4.17 Internal invariants

Function startPreview(tcReport)
ensureReportingDate
ensureDatabase
report form tcReport preview
...

IF i = 1
...

ELSE // i = 2
...

ENDIF

IF i = 1
...

ELSE
ASSERT i = 2
...

ENDIF

2 0 2 Test-driven Application Development

Assumptions about the control flow in the program can easily be verified

using a similar approach: Instead of

it’s better to write:

Listing 4.18 Checks in the control flow

Class invariants are implemented as testing methods outside of Eiffel. The

methods in this class have no processing function and merely check the

current status of the class. This checking method should simply return

TRUE if everything is okay and FALSE otherwise.

A transaction posting class whose objects must always be balanced

(regardless of the method used) can verify this state using an appropriate

method:

void doSomething() {
 for (…) {
 if (…)
 return;
 }
 // the program should never get here
}

void doSomething() {
 for (...) {
 if (...)
 return;
 }
 assert false;
}

// Returns TRUE, if balanced
Private Boolean balanced()
{
 ...
}

Methodologies and Tools 2 0 3

This method can be viewed as a class invariant. All other methods can use

to check that the invariant states are maintained before and after

processing.

Side effects

When using ASSERTs, you must make absolutely certain that no side

effects occur adventitiously. The balanced() method from the example

above should not be allowed to change the status of the class. If ASSERTs

are removed from the final version of the program in the run-time

environment, balanced() is not executed and the status of the class

differs from what it would be in a walkthrough in the development

environment.

Sometimes side effects are introduced intentionally—for example, when

a comparative value is needed to check a postcondition no longer

required in the absence of ASSERTs. To do this, simply create a) a local

function or an internal class that saves the comparative value and b)

perhaps a second function or method in the internal class that performs

the comparison later on. In Delphi it could take this form:

Assert balanced();

procedure TMyClass.myMethod();
var cTmp:string;
cString: string;
// local function
function tmpCopy(a:string):boolean;
begin
 cTmp := a;
 result := TRUE;
end;
// Method code begins here
begin
cString := 'abcdefg';

20 4 Test-driven Application Development

Listing 4.19 Assert statement with side effect

Temporary storage of the string is also carried out in an ASSERT call,

thereby also suppressing this line once all ASSERTs have been removed

from the code. During code optimization the compiler then automatically

removes the local tmpCopy() function because it is no longer being

called.

4.3.5 Test Code

Object-oriented languages offer developers the option of encapsulating

object attributes. But using this seemingly quite helpful option may

hinder comprehensive checking of the state of an object from the

outside, e.g. preculde use of a test script. In some development

environments, encapsulation is so extensive that protected attributes can

only be accessed, even from the debugger, when you are directly within

a method belonging to the class being tested.

You can circumvent this restriction in the class design stage by including

one or more methods in each class whose sole purpose is to test the

other methods in the class (test code procedure). Because all class-

specific tests are carried out by a method in the class, all protected

attributes in the class can also be analyzed during the test.

Naming
conventions

The test code procedure is especially suitable as an alternative or

enhancement to test frameworks for unit testing. One great advantage of

the test code method is that the writing of test drivers only involves

instantiating an object for each class, calling the test code method and

writing each result returned by the tests into a log file. The testing

environment and test driver can be combined because class-specific test

methods are kept within the class. The test driver can locate the test

// Assert with side effect, cString is saved

temporarily

assert(tmpCopy(cString));

// additional processing ...

// Comparison with saved string

assert(cTmp = cString);

end;

Methodologies and Tools 2 0 5

method via a naming convention, as is done nowadays in some Xunit

frameworks. Many programming languages provide mechanisms for

querying the names of methods offered by a class. If each test method

begins, say, with testing, the test driver can be set to call each

testing… method in order.

Dump methodA class in integration tests can include a dump method that returns the

values of all protected attributes or writes the current state into a log file.

XML is a suitable format for such files. This method allows for generic

representation of container hierarchies in an object dump.

The above-mentioned testing methods for class invariants can also be

regarded as test code that can be called from the test driver when

needed. Each of these testing methods should be removed from the

production code using conditional compiling. The current test code is

automatically administered and distributed with the class and is also

automatically integrated into the source code control system.

4.3.6 Code Instrumentation

If your classes or the functions of your application recognize a debugging

or tracing mode, you can easily trace the paths that run through an

application being tested. This is a useful error analysis method for the

testing phase. Here is an example of a homemade variant (pseudo code):

At the beginning of each method, such pieces of code write into a

debugging output file or a window the name of the object or another

identifying feature, plus the name of the method. It should be possible to

confine this to individual objects in accordance with the IF statement.

Tracing codeDepending on whether the DEBUG_CODE constant is defined, the

logging in the pseudo code example is either compiled or not. In some

instances it is best to leave tracing code in the release version. Of course

#ifdef DEBUG_CODE
if <ObjectName> in DebugTrace

debugoutput <Object+MethodName>
endif
#endif

20 6 Test-driven Application Development

this is only an option if the tracing code does not slow the performance of

a time-critical application. Using tracing code that can be activated and

deactivated from the outside allows for the detection of bugs, even at the

customer site.

A somewhat more elegant variant can be realized in languages that

support try ... finally constructs and similar features. The try

keyword can be used to introduce a block of statements that is closed by

a finally block, regardless of whether the try block ends in an error or

anything else via return or exit.

Try ... finally constructs are generally used for blocks of code that

absolutely must be cleaned up after they are executed. Such constructs

can also be used for code instrumentation, as the following example

shows:

In this case tracing is delegated to a profiler class. The

ProfilerEnterProc call is inserted before the actual method code. It

informs the profiler that procedure or function number N has just been

accessed. The actual method code follows try, which is also inserted. The

finally block is inserted after the method code. It calls the profiler again

and informs it that procedure number N is now being exited.

Each add-in is indicated by begin and end tags, thus enabling add-ins that

are added automatically to be removed automatically as well.

4.3.7 Audit Trail

An “audit trail” is also a form of logging involving logging changes to data

only. Databases often contain trigger mechanisms that allow certain

procedures to be started when records are updated, inserted or deleted.

You can log changes to data in these procedures.

function TMyClass.doSomething(): boolean;

begin

{>>Profile} ProfilerEnterProc(N); try {Profile>>}

 // ... Method code

{>>Profile}finally ProfilerExitProc(N); end;{Profile>>}

end;

Methodologies and Tools 2 0 7

Audit trail logs are used to track and assess changes to data that occur

during non-transparent, nested transactions. They are particularly helpful

when they log the procedure or method that made the change to each

record. They allow tracing procedures to be tracked via code

instrumentation and non-reproducible errors to be detected.

4.4 Tools

I will not attempt to cover all available testing tools in the following

section; instead I will only indicate the wide range of tools available—or

not available—as well as giving some pointers on how to use several of

them.

An exhaustive, but partly outdated list of testing tools is available at

[QAResource]. This page is certainly a good place to begin your search for

the right tool. A list of affordable development tools in German, which

also includes one or two testing tools, can be downloaded from [ZDNet].

[Sourceforge] is a central directory for a variety of open source projects.

German university home pages also offer an overview of a variety of

program tools, among others [UniPassau].

4.4.1 File comparison tools, Diff, XML Diff

GNU Diffutils from the Free Software Foundation is available for

download at [DiffUtils]. It is distributed as C source code, Makefiles, etc.

for compiling Diffutils on Unix/Linux. Specialized Makefiles and .bat files

are provided for MS Windows and DOS. A binary version of Diffutils (and

a great deal more) for MS Windows can be found at [Sourceforge] as part

of the GnuWin32 project.

The current version of the Diffutils cmp program can skip a specified

number of bytes at the beginning of files being compared and can also be

set to stop after a given number of bytes have been compared. By

repeatedly running cmp, a developer of test scripts can exclude sections

of the files from being compared in diff analysis.

If you want to use Diffutils or other GNU programs in WSH scripts you

can use the Exec method of the Wscript.Shell object to do this. The

following JScript example shows how you can access the cmp program.

2 08 Tools

Listing 4.20 JScript with StdOut access

Impressware [Snap] offers a tool by the name SNAP that can carry out

masked file comparisons. In addition, SNAP is able to compare database

tables or individual records directly or with the contents of data saved

offline. SNAP is available for COBOL and Natural development

environments.

A program for searching for and reporting differences between XML files

is available at [XmlDiff1]. XMLDIFF is written in Python and can be

downloaded and distributed for free under the GNU Public License

(GPL).

An implementation of XMLDIFF in Perl can be found at [XmlDiff2].

4.4.2 Data Access and Evaluation

Database interfaces can easily be found on the Web. Simply enter

“Database Desktop” in your favorite search engine and you will probably

get two or three dozen hits. Some development environments come with

their own database desktop, while database developers usually offer an

interactive interface for their database.

All these interfaces offer interactive access to databases, and the better

ones also offer the opportunity to search for or alter table structures or

field types, if this is allowed. Access is obtained either by means of a

// execute cmp with StdOut access

var Shell = new ActiveXObject("WScript.Shell");

var Pipe = Shell.Exec("cmp file_1 file_2");

// create results file

var fso = new

ActiveXObject("Scripting.FileSystemObject")

var a = fso.CreateTextFile("results.txt", true);

// read StdOut and write to the results file

while(!Pipe.StdOut.AtEndOfStream)

 a.WriteLine(Pipe.StdOut.ReadLine());

// close results file

a.Close()

Methodologies and Tools 2 0 9

native driver or via an ODBC driver. In most cases the database interfaces

are only used interactively and cannot be programmed.

If you have to test in your MS Windows client a data intensive application

that stores your data in a relational database that you can access via

ODBC and you have no fear of programming in an xBase language, you

should have a look at Microsoft Visual FoxPro (MS-VFP). You will not be

able to find a better “data shovel” in MS Windows. VFP 6.0 ist part of

Microsoft Visual Studio 6.0, but was not incorporated into Visual Studio

.NET because this would have required replacing VFP’s own database

engine. You can obtain more information on the current VFP Version 7

under [MSVFP.]

Data access with
VFP

VFP is a fully mature development environment and is also very useful for

testing data intensive applications. The programing language is an object

oriented extension of the widely known dBase langauge. All data can be

manipulated and evaluated with xBase commands or in SQL syntax. The

SQL commands are directly integrated into the language, but do not have

to be set up as a string and entered as parameters of the loading

procedure, as is otherwise usually the case. The results of an SQL search

are stored in a local cursor that can in turn be searched and evaluated

with xBase commands. With a single command CursorToXml you can

convert the result of an SQL search into XML format (and with

XmlToCursor back again), and so on.

For test purposes you can create your own views that do not put a load

on the database or you can communicate with the target database with

its own SQL syntax using SQL Pass Through technology.

Scripting with VFPVFP uses a non-typed, interpretative language that is well suited to

creating test scripts. A simple call is possible if the Windows Scripting

Host is needed for system-level tasks. The “Hello World” example in the

section “Scripting under Windows” on page 162 looks like this in VFP:

WSHShell = CreateObject("WScript.Shell")

WSHShell.Popup("Hello World")

21 0 Tools

It’s just as easy as JScript or VBScript. In addition, VFP has very powerful

and fast string processing functions that make it possible to use a test

script to analyze even large text files simply and quickly.

CAL in Munich [CAL] offers “FoxRunner”, a program that uses VFP as a test

platform for data-intensive applications on MS Windows. FoxRunner also

permits the automatic generation of test data and the creation, storage

and comparison of data snapshots for all ODBC-compatible databases.

4.4.3 COM Interactive

Microsoft Visual FoxPro 7 (VFP) is also suitable for interactively testing

COM interfaces. The VFP interface permits interactive instantiation and

manipulation of COM objects.

Figure 4.13 shows the Command window on the VFP desktop in which a

Word.Document object has just been created for a test. This object can

already be used in the second line, because every line in the Command

window of VFP is executed immediately once it is closed by the Enter key.

It is possible to navigate freely in the command window. Even command

lines that have already been entered can be edited and repeated

individually or in groups, and the return values of the method called can

be shown on the VFP desktop.

In addition, the methods, properties, interfaces, etc. of a COM object can

be examined using the Object Browser that is integrated into VFP7.

Figure 4.13 Command window of the VFP desktop

Methodologies and Tools 2 11

Figure 4.14 The VFP Object Browser

Figure 4.14 shows the methods of MS Internet Explorer as depicted in the

VFP Object Browser.

4.4.4 Code Coverage, Logging, Tracing and Profiling

Code coverage tools can recognize which sections of source code were

tested in a test run. Simple tools are limited to the statement coverage

(C0), whereas more demanding tools also deliver information on branch

coverage (C1) and coverage of conditions (C2). The significance of the

coverage indices was spelled out in the section “Classic Coverage Indices”

on page 130.

Logging and tracing both mean that log information from the program is

recorded at run time. In the case of logging this frequently involves both

contextual and technical information, whereas tracing generally involves

debugging information only.

21 2 Tools

Profiling Profiling tools independently collect and log system information during a

program run. This can involve different kinds of information. This

frequently includes the time taken by individual commands or

procedures, memory use, processor times for individual tasks, etc.

A continuously updated list of code coverage, logging, tracing und

profiling tools can be found at [TestEvaluation].

Brian Marick [Marick] publishes a number of articles on code coverage

and tracing on his Web site. You can also find download links on his site

for freeware tools that he has written.

JProf is a Java profiler, written in C++, that traces memory use,

synchronization and processor use. It can be downloaded for free at

[jProf].

At [log4j] you can find the Logging Framework for Java from the Apache

Foundation’s Jakarta project.

GpProfile is a freeware profiler for Delphi [gpProfile]. The try ... finally

example in the previous Code Instrumentation section comes from a

project that was carried out using gpProfile. The output of the profiler is

suitable for analyzing calling sequences and the times required per

function.

Coverage and profiling tools are already integrated into some

development systems. The current version of Borland’s Jbuilder contains

the OptimizeIt suite, consisting of code coverage, profiler und thread

debugger [JBuilder]. Microsoft Visual FoxPro [MSVFP] also includes a

simple coverage profiler.

4.4.5 Design by Contract

Here are two tools that implement design-by-contract procedures (see

above) in Java.

Reliable Systems offers a free pre-processor at [iContract] that

instruments Java sources with code for checking invariants, preconditions

and postconditions.

Methodologies and Tools 2 13

ParaSoft has a tool called Jcontract that also makes design by contract

possible in Java [ParaSoft]. It enters the conditions to be tested as

invariants, preconditions and postconditions in comments similar to

JavaDoc tags. A special compiler uses these to make the required Java

code.

Listing 4.21 Example of a Java class using Jcontract conditions

4.4.6 Load and Performance Tests

The list of stress and performance testing tools for is now almost as long

as the one for GUI test automation (see below). A continously updated

list can be found at [Stress]. Virtually all major GUI test automation tool

vendors have enhanced their tools to include Web applications and

provide integrated stress and performance testing tools or integration of

tools that can be bought separately. See the section on GUI Test

Automation below for more information.

Microsoft offers a free Web Application Stress Tool (WAS) for Win NT 4.0

and Windows 2000 at [MSWas]. Microsoft Visual Studio .NET contains a

new Web Stress tool (no longer free).

PushToTest [PushToTest] offers free open source tools for testing,

monitoring und automating Web Services systems. TestMaker 3.0 is a

tool that tests Web Services for scalability and performance. It creates

test agents that simulate real-world Web Services environments.

Public class example

{

 /** @pre month >= 1 && month <= 12 */

 static void setMonth (int month) {

 // ...

 }

 //////////

 public static void main (String[] args)

 {

 setMonth (13);

 }

}

21 4 Tools

TestMaker 3.0 is written in Java and uses Python as its scripting language.

Program and source code are available under the Apache Open Source

License.

Red Gate [RedGate] offers ANTS, an “Advanced .NET Testing System”.

ANTS is used for stress testing Web applications that were created using

Microsoft’s .NET technology.

Scapa Technologies [Scapa] has a performance testing tool that is

specialized for Citrix Metaframe environments. Scapa StressTest works

together with other scripting environments and testing tools such as

WinRunner and SilkTest.

Paessler Co Ltd [Paessler] is a German firm that offers a Web server stress

tool at markedly lower prices than its larger competitors.

Applied Computer Techologie [Acomtech] is one of several vendors

offering network performance testing tools.

4.4.7 GUI Test Automation

The largest number of test automation tool vendors is still to be found in

this group. The majority of the tools permit interactive displays of user

actions linked to editing and extending of the scripts that are created,

mostly in proprietary scripting languages. A criticism of this approach

from the standpoint of rapid application testing is to be found above in

the section “Automating Testing Procedures” on page 158.

Many suppliers integrate additional load testing procedures for client/

server and Web applications into their automation tools as well as

management functions for the administration and automatic repetition of

test sessions. The tools are too varied in their level of performance and

too focused on certain details for a simple and unequivocal evaluation.

However, a certain degree of classification into tools that mainly support

testers and those that give more support to developers is possible.

[Mercury] and [Segue], for instance, are certainly more tester oriented,

whereas [ParaSoft] is mainly intended for developers and integrators.

Isolation layer GUI test automation tool vendors attempt to master the problem of

constantly and rapidly changing user interfaces by inserting or making

Methodologies and Tools 2 15

possible an isolation layer between the test script and the application

under test. Most tools have long since distanced themselves from the

pixel oriented approach involving mouse clicks and so on, and are able to

directly address the controls making up the the graphical interface. In the

scripts it is not necessary to use only the object names that the

developers gave the controls, but logical names that are assigned to the

“physical” names via one or more mapping tables can also be used.

At [Nagle] you can find an interesting design for a “Test Automation

Framework” that is “keyword and data driven” and uses the mapping

tables from GUI test automation tools to develop a tool-independent

framework for describing test cases. According to the author,

construction of the frameworks took 18 months. The article shows clearly

and unmistakably the large quantity of both conceptual and financial

resources that is necessary for the automation of testing.

A number of GUI test automating tools are listed here alphabetically with

explanatory comments.

� Android [Android] is an open source record and playback tool for the

Unix/Linux environment.

� What does this example show?

� The Mercury Interactive Corporation [Mercury] offers “WinRunner”

and “Xrunner”, test automation tools for MS Windows and X-

Windows interfaces respectively. “Astra Quick Test” and “Quick Test

Professional” are offered for Web interfaces.

� PARASOFT Corporation [ParaSoft] offers a tool called “WebKing” that

designed to support development and testing of dynamic Web sites.

� The firm Rational [Rational] offers “Visual Test” (acquired from

Microsoft), a test automation tool for MS Windows programs that is

closely integrated into the development environment of MS Visual

Studio 6. Für die Steuerung von Web-Sites wird »Rational Robot«

angeboten, das auch in die umfassenderen Pakete »Rational Test

Suite« und »Rational Team Test« integriert ist.

� Segue Software [Segue] offers SilkTest für desktop, client/server and

Web applications.

21 6 Tools

I have not succeeded in finding a simple Capture & Replay tool for MS

Windows that does without its own scripting and can therefore be simply

and effectively integrated into general scripting environments. [Unisyn]

offers a bargain-priced tool for automating testing in Windows (starting

with Windows 98) that also features Capture & Replay. If you operate

your test automation with the help of the Windows Scripting Host and

need Capture & Replay capability from time to time, a tool like this

certainly sufficient.

4.4.8 Testing Distributed Systems

In testing distributed systems it is necessary to take the time required for

transactions between a number of clients and one or more servers into

consideration. Because in situations like this different processes with

different speeds are constantly running, differences can occur in the

sequence of events for clients and servers that only produce an error in

special circumstances. In other situations with a somewhat different

sequence of events the error may not occur at all. On the one hand this

makes finding and reproducing errors difficult, on the other it means that

close attention must be paid to seeing that the sequence of events is

identical to the initial testing when the test is repeated.

A trace-based test method for distributed systems developed by a team

headed by E. Reyzl at Siemens is described at [TMT01]. This method

traces the exchange of information between distributed components and

evaluates it. Recording is carried out either by monitoring network

communication using a packet sniffer or by instrumentation software

under observation. The message exchanges are graphically represented

on sequence diagrams following the style used for UML sequence

diagrams.

Agile Quality Management 2 17

5 Agile Quality Management

The best laid plans of mice and men often go astray.

(paraphrased from “To a Mouse, On Turning up her

Nest with a Plough” by Robert Burns [Burns])

5.1 Keep It Flexible

Everybody is talking about agile methods. But what exactly does this

mean? Agile methods are first and foremost the proven survival strategies

of small, successful teams. Their secret of success is simple: Keep it

flexible! The most important thing is benefiting the customer. It’s not the

plan, model or method which is important to the customer at the end of

the day but rather the product. The software has to adapt to the

conditions under which the customer works, not the other way around.

Yet these conditions may be subject to constant change. That’s why the

key ingredient of a successful project is being able to react to these

changes quickly.

Counter-
movement

For a long time an attempt was made to overcome the software

development “crisis” by employing increasingly detailed and rigid soft

development methodologies. A countermovement sprang up whose

members were successful, however they no longer wanted their success to

be discounted just because they didn’t follow a plan. In February of 2001,

17 of these “anarchists” got together and tried to synthesize their

experience and principles. The result was The Manifesto for Agile Software

Development [AgileManifesto].

The Manifesto consists of four declarations and a series of principles

derived from them. Quote from the Agile Manifesto Web site (http://

agilemanifesto.org/):

“We are uncovering better ways of developing software by doing it and

helping others to do it. Through this work we have come to value:

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

2 18 Keep It Flexible

– Customer collaboration over contract negotiation

– Responding to change over following a plan

That is, while there is value in the items on the right, we value the items

on the left more.

Now let’s try to apply these principles to testing and other quality

assurance methods for the purpose of achieving agile quality

management.

5.1.1 Individuals and Interactions

If we value individuals and interactions more highly than processes and

tools, we will have to let go of the notion that there is someone in our

project who assumes the burden of testing and is responsible for testing

quality into the product. There also won’t be a quality assurance group at

the end of the line who decides on the fate of the finished product (i.e.

deliver or not deliver). To be sure, everyone involved in the development

process is responsible for the quality of their part of the product. In other

words, quality management means ensuring that the necessary time,

infrastructure and knowledge are available. All the team members should

know the quality objective and current project risks. Everyone should be

trained for their role as specialist, architect, developer or support

engineer in testing techniques or—expressed in more general terms—

quality assurance techniques.

Identifying
individual areas of

responsibility

Working autonomously is predicated on a clear-cut identification of the

individual areas of responsibility and those in charge of them, e.g. by

modularizing software and allocating tasks in the team. Chaos can be

virtually precluded if a project is organized and carried out as follows:

motivated, capable individuals; a team which is self-organized; and full

support by management trusting that all participants will do their best.

Added to which: a realistic schedule with short iteration cycles, regular

reviews of what has been achieved, and the availability of knowledgeable

contacts at the customer’s or users’ end.

An interaction occurs when someone uses someone else’s product for his

own work and doesn’t simply have to accept it as is but may criticize it.

Using the product in a real-world context enables most errors to be

Agile Quality Management 2 19

detected. The feasibility of a vision or the quality of an analysis of the

proposed use can be best checked by attempting to transform them into

a software architecture. The architecture ideas in turn can probably be

best assessed by implementing them and deploying the resulting

software. That’s why short interaction cycles and frequent deliveries are a

very effective quality assurance instrument. The completeness of the

product is less important in this context. If creating the full-fledged

functionality takes too long, produce a prototype first.

Joint assessmentAn interaction also occurs through reviews of documents, schedules and

completed program components; joint evaluation of intermediate work

products; agreeing on the next steps to be taken; analyzing errors; and

making suggestions for improving the process. Individual system

components are subjected to more in-depth testing whenever this is

suggested by the risk analysis. Interactions can’t take place unless at least

two individuals are involved in testing or a review. The individual who has

engineered the product should be allowed to ask any other team member

to review or countertest the product. The decisive thing is only the

competence required for the test or review. The developer might say to

the architect, “Why don’t you take a look at this procedure and see if you

see anything that might go wrong.” By the same token, any team member

can ask another member for intermediate results or meet in one-on-one

talks for deciding on how to proceed further. There aren’t any prescribed

procedures or information channels, the team organizes itself. Any

conflicts arising in the process are resolved in a personal exchange,

whether one-on-one or in a group. In the process, the project manager

frequently assumes the role of moderator.1

5.1.2 Working Software

It should come as no surprise that the real goal of a software

development project is not a cupboard stuffed full of documents,

schedules and models, but rather working software. That is why working

software is the key yardstick of project progress. The authors of the Agile

Manifesto include an example in their Principles: “Too often, we’ve seen

1 At the present writing, I am working as an architect in a team of about ten people
spread across the country. In most cases phone conferences suffice for self-
organizing the team.

2 2 0 Keep It Flexible

project teams who don’t realize they’re in trouble until a short time before

delivery. They did the requirements on time, the design on time, maybe even

the code on time, but testing and integration took much longer than they

thought.” [FowlerHighsmith01] If a bottleneck is to be avoided at the end

of the development process, quality assurance has to be integrated in that

process. Each product or intermediate product in the process has to be

linked to a quality assurance method.

� Documents and models are best linked via reviews. They can be

ongoing reviews by working in teams of two, informal reviews through

proofing by another team member, group reviews of central design

decisions, analysis reviews by specialists, etc.

� Functions, procedures, classes, modules, components—all units of the

program are integrated through automated or interactive unit testing

or through embedded testing of the run-time conditions with the use

of design-by-contract constructs.

� The assembly of components to form a complete product (build) is

linked to smoke testing and automated regression testing.

The creation of a product or intermediate product is immediately

followed by the process prescribed by the associated quality assurance

method, meaning quality assurance occurs in-process and not right

before delivery is due to take place. Of course, this takes time—just

exactly the time you might otherwise not have right before you are due to

deliver. It might even take less time since waiting to perform it right

before delivery probably means having to get your mind back around

individual program components.

5.1.3 Collaboration with the Customer

A new species — the software architect — has recently sprung up

between the manager, programmer and user. In his book Effektive

Software-Architekturen (“Effective Software Architectures”) [Starke],

Gernot Starke describes the role of the software architect as follows:

“Software architects form the interface between software analysis, design,

implementation, management and operation.” Although not appropriately

cast or not cast at all in many projects, this new role is of central

importance for the success of a project. The architect is essentially

Agile Quality Management 2 2 1

responsible for the proper functioning of the overall system. Since he acts

as the “customer’s advocate” [Starke], he is also responsible for the

feasibility of the customer’s requirements.

Figure 5.1 Collaboration with the customer

Agile quality management takes into account the growing significance of

the software architect by appropriately casting this role in the project. Of

course, the project risks always determine the appropriate role. In mini-

projects the only analyst, programmer, documentor, and tester is

probably also the architect. When projects become larger, the architect

role very soon becomes a full-time job. Very large projects sometimes

have to be divided among several architects.

Interface between
the customer and
development
team

The architect forms the interface between the development team and the

customer. The most important thing to the authors of the Agile Manifesto

was that there be collaboration with the customer in a project. Agile

projects should no longer be handled in the same old way with the

customer not hearing or seeing anything for a long time after the analysis

phase until someone all of a sudden appears at the door with the finished

software product. To be sure, customer collaboration means

collaboration on an ongoing basis. When the project has kicked off,

someone has to be designated as the contact or liaison at the customer’s

end. During the project, this contact always has to be available and be

able to provide information as needed. The contact should be a specialist

and, if possible, a future user of the program being designed and

engineered; in other words, the contact shouldn’t be someone in

purchasing who is in charge of software procurement. The reason for this

requirement is that the contact also assumes a key role in agile quality

Developer Architect User

Collaboration

2 2 2 Keep It Flexible

management. This should be the individual who essentially assumes and/

or supervises user testing.

Figure 5.2 Division of labor during testing

According to this division of labor, the developer handles unit testing, the

architect does integration and system testing, and the user carries out

usability testing.

In so doing, the roles and tasks are to be understood in a very general

sense:

A developer is anyone who produces a product or intermediate product

of software development. This includes not only programmers but also

team members in charge of analysis, design and documentation. For the

sake of simplicity, “unit testing” refers to all testing impacting the finished

product.

Sound
architecture

Integration and system testing is the job of the architect in as much as the

architect checks for the correct implementation and structural soundness

of his own architecture. Of course, assigning this task to the architect

doesn’t mean that he is responsible for performing all integration and

system testing by himself. This is hardly possible in a sizable project. In

any event, he should monitor testing. This means first and foremost

assessing the risk analysis, test plan and test design and contributing to

laying them out.

Testing is concluded by the user’s representative checking for compliance

with the customer’s requirements and usability of the program as a

whole. Here, too, the task should be assigned to this individual on

Developer Architect User

Division of labor

Unit testing Integration and
system testing

Usability testing

Agile Quality Management 2 2 3

account of its content. In common practice in large-size projects,

however, this task is subdivided into subtasks which can be delegated.

5.1.4 Reaction to Changes

Risk-oriented and agile procedures don’t mean that planning can be

dispensed with completely. It should basically be understood that no plan

is written in stone but rather it applies as long as its basic premises apply.

The most important effect of planning is thinking about something in

depth. The second most important effect is that there is an intention of

doing something and possibly being able to estimate whether that

intention is realistic. However, reality frequently gets in the way when it

comes to this second aspect.

It is useful to frequently think about the following early on:

� What are the greatest risks, and how will we deal with them? One rule

of thumb is to deal with the items posing the greatest risk first.

� Which system environment or scenarios have to be considered?

Examples of this are the various operating system configurations which

have to be included in testing, and others which can be discounted.

� Which processes does the program model? What are the application

scenarios, and how can they be tested?

� Which quality assurance techniques are to be applied? Should we use

a test framework? Or design by contract? Or both?

� Which types of tests are to be automated, which are to be performed

manually? How can automated testing be supported? Which scripting

environment should we use?

� Do we have the qualified people we need on the project? Do we need

someone who is specialized in testing tools? Should a part of testing be

farmed out to external testing contractors?

� What hardware is needed? How many and which workstations or PCs,

printers, network hardware, cabling, phone lines are needed?

� Which tools are to be used? Is a bug tracking database to be sourced or

developed in house? How is test case tracking structured, how are bug

reports written and distributed? How is bug fixing reported?

22 4 Estimates of Effort

A whole series of questions needs to be considered early on. However,

very rarely does a detailed written plan need to be drafted. Many answers

will change in the course of the project; risks constantly have to undergo

reassessment. Any plan made soon has to be discarded. The fact that we

haven’t succeeded in keeping all the project records up to date for the

umpteenth time is a source of frustration and dissatisfaction. That’s why it

makes more sense to internalize the principles of agile quality

management and make them a cornerstone of everyday project work

rather than write them down neatly and file them away in the nearest

project folder.

5.2 Estimates of Effort

The general effort allocated to testing and reviewing (documentation,

models, concepts) is put at between 30 % and 90 % of the overall project

effort, a tendency which is on the rise [NIST]. Let’s assume some value in-

between and put the effort for testing and reviewing at 50 % of the

overall project effort. Now let’s combine the effort allocated to analysis,

design, coding and documentation. You now have half of the project

effort. The other half is spent on testing and reviewing.

Unit Testing

How much should the effort allocated to unit testing be in relation to the

overall project effort? In his book Code Complete [McConnell93], Steve

McConnel speaks of 8 % to 35 %, depending on the overall complexity.

The share devoted to unit testing increases with increasing complexity.

Integration Testing

The effort allocated to integration testing increases with the increasing

complexity of the overall system in relation to the overall effort. In most

cases, it is put at between 5 % of the overall project effort for simple

systems and 30 % for complex systems.

System Testing

Like integration testing, the effort allocated to system testing increases

with the increasing complexity of the overall system, ranging between

5 % – 25 % of the overall project effort.

Agile Quality Management 2 2 5

Regression Testing

The effort allocated to regression testing correlates closely to the test

methods employed. If regression testing is exclusively manual, it can

easily comprise 100 % of initial testing for each major release. According

to [KanerBachPetti02], automating testing involves ten times the effort of

manual testing. In my own experience, the effort required for the

maintenance of automated regression testing steps amounts to an

average of 30 % of the manual testing effort of the program components

involved per major release. This value can be reduced substantially by

employing a test-oriented design of the program components.

User Testing, Acceptance Testing

The effort required for user testing may amount to between 10 % and

30 % of the overall project effort. It increases in keeping with the growing

complexity of the project.

5.2.1 Evaluating One’s Own Projects

The above figures should not be understood as absolutely reliable limits

in themselves, but rather simply as empirical values derived from

evaluation of a series of projects. Try to evaluate your own projects and

use the findings as a guideline for calculating the numbers for your next

project.

The following breakdown might be applicable to a project with low to

moderate system complexity, numerous individual modules, and high

technical complexity:

� 5 % of overall effort for unit testing

� 15 % for integration testing

� 10 % for system testing

� 20 % for user testing

Of course, this effort can be dispensed with if you develop disposable

software that no one seriously uses. If you intend to or must deliver a

quality program, however, it is well to include testing and reviewing costs

in your estimates. Otherwise a development period of one year can

2 2 6 Estimates of Effort

quickly turn into two or three years until the product is actually “ready for

prime time”, with no one really understanding why.

5.2.2 Software Risk Classes

Whereas we have made a flip distinction above between disposable

software and quality software, the German Technical Control Association

(TÜV) has published a classification scheme for software according to risk

classes (quoted from [Wallmüller90]). Five classes are distinguished:

� Class A: no risk

� Class B: low risk, e.g. image loss

� Class C: moderate risk, e.g. financial loss

� Class D: high risk, high financial loss possible

� Class E: very high risk, personal injury possible

� The testing costs corresponding to the various risk classes are specified

as follows:

� Class A: no effort

� Class B: only black box testing

� Class C: black box testing and usability testing, statistical program

analysis (reviews, code checker, etc.)

� Class D: black box testing, white box testing, usability testing,

statistical program analysis

� Class E: black box testing, white box testing, usability testing,

statistical program analysis, additional risk assessments of the overall

system such as environmental impact, organizational operations, etc.

Although this classification is not new it is remarkable that the TÜV

association took such a forward-looking approach back then by thinking

in terms of risk. Of course, “high financial loss” is very relative.

Consequently, classifying your product according to one of the above

categories is more or less subjective. Yet however you classify your

product, decide what effort you want to spend on quality assurance.

Agile Quality Management 2 2 7

5.3 The Test Machine

If at all possible, don’t use the development system as your test system.

Even if you install the program to be tested in a separate directory on

another hard drive, the fact that the development environment is also

installed on the machine will have serious consequences (Registry

entries).

The test machine(s) should only be used for testing purposes. If various

printer drivers, graphic cards, ISDN cards, etc. are to be tested, it is

advisable to reinstall the entire machine without having to expend much

time or effort.

5.3.1 Cloning Hard Drives

Cloning hard drives is much easier if you use the right software tool for

the job. These tools enable the entire contents of a hard drive to be

written to a file (i.e. cloned or mirrored). This hard drive image can then

be burned onto a CD, for example. Together with the accompanying boot

diskette you can copy the hard drive image on to the hard drive and thus

avoid time-consuming installation work. A leading tool for cloning hard

drives is Norton Ghost [Ghost].

5.3.2 Virtual Machines

An alternative to cloning hard drives is using virtual machines. Virtual

machines are set up on your host operating system as guests. The current

version of VMware [VMware] supports Windows (from Windows 2000)

and Linux. Various operating systems and versions can then be installed

on the guest systems. At present you can install the entire range of

Microsoft OS versions as a guest system under VMware: from MS-DOS to

Windows 3.1 to Windows .NET Enterprise Server (experimental). In

addition, VMware Workstation 3.1 also supports all standard Linux

distributions, FreeBSD and Netware 6.0 (experiments). The only

prerequisite is that you have installable versions of these operating

systems.

VMware uses virtual disks which can be stored as files on the hard drive

of the host system. These files can be included in the normal backup

2 28 Administering Test Data

process. It goes without saying that you can also back up the files of a

virtual machine according to the basic OS setup and thus always be able

to revert to this status. Virtual machines have become a highly

recommended alternative to individual test machines when it comes to

testing, particularly of various system configurations and installation

procedures.

5.4 Administering Test Data

In some of the examples given in this book we have seen how important

it is to run testing on secured data capable of being reproduced at any

time. This data has to be organized and administered. The ideal thing is to

do all testing using the same test data. This way, you only need one copy

of your original test data which you can load into your test environment

before testing. It is hard to put yourself in this position however. The data

which influences testing also includes control data used by the

application (parameter tables, INI files, etc.) or metadata (format

descriptions, data dictionary, etc.). If your application uses control data

and/or metadata, you will probably not be able to get around

administering several versions of this data for different tests, with each

version corresponding to a test scenario.

It is relatively easy to model the various test scenarios in the directory

structure of your test environment. The structure might look like this:

Figure 5.3 Directory structure with test scenarios

Prior to testing, the data of the respective scenario is copied into the data

directory. The procedure of switching over the data directory to the

required scenario by switching over the program parameters is not

advisable. The test may undergo modification, making the initial test data

unavailable for retesting.

Agile Quality Management 2 2 9

When your test data reside in a server database, the various scenarios are

either constructed as different databases whose data is then copied into

the working database of the test environment prior to testing; or

administered using only the SQL scripts that are required to create the

initial test data. The copy method is the easier variant of the two.

Changing or adjusting the initial test data can be done via the database

user interface. If your test scenarios are only available as SQL scripts, you

would have to run the script every time there is a change in order to

determine whether the change is correct.

5.5 Quality Metrics

Like other software metrics, test metrics have gotten somewhat of a bad

rap. There is hardly an article around in which details relating to lines of

codes or function points are to be found.2 However, if the figures

collected in a project are not viewed as absolute values unto themselves

but rather in relation to one’s own experience, estimates and goals, they

are sure to be of use in project management.

I have titled this section “Quality Metrics” because, in the context of

integrated and product-oriented quality assurance, the figures given here

do not provide information on how far along we are with testing (=

process-oriented view), but rather where the project as a whole stands in

relation to the quality attained.

Don't attempt to use these figures in assessing the productivity of testers

and developers. Very soon, they will no longer tell you where the project

stands, but rather how your people react to productivity measurements.

If a team member makes finding as many bugs as possible his top priority,

the task of ferreting out the most egregious errors is sure to get the short

end of the stick.

5.5.1 Errors per Area

Errors per area is probably the most important metric. This figure can be

directly correlated to the assumptions made in the risk assessment.

Consequently, you should use the same breakdown for errors per area as

2 Or I haven’t been reading the right articles.

2 30 Quality Metrics

you did for the risk analysis. In the example of risk assessment given in

chapter 3, this was the functional breakdown into data collection, user

administration, data backup, and reports. And also a technical breakdown

into algorithm integration, input/output, and workflow.

If you are able to add up the errors detected according to this breakdown,

you will know how prone to error individual modules or be able to gauge

how critical technical conditions are. These findings can flow into the risk

assessment for the test runs of the next program version.

By the way, the rule is that the number of errors detected is directly

proportional to the number of errors not yet detected. If you have

detected a particularly high number of errors in a module, this means that

this module probably contains more undetected errors than the modules

in which you have detected fewer errors.

5.5.2 Errors According to Error Type

Another breakdown classifies errors according to various error types.

Here an attempt is made to give the reason for the error. The reasons for

errors can lie in the analysis, design, programming, database, operating

system, development environment, etc. Draw up a list of error reasons

which are of interest to you, reasons which may be interesting because

you see possibilities for remedying the source of the error. If the design is

causing most of the errors, perhaps you need an experienced architect for

your team. If it’s the development environment, perhaps you should

change vendors.

5.5.3 Errors per Unit of Time

The time can be indicated in your test evaluations via two particulars.

First, via the date on which the error was detected, and secondly via the

date on which the error was fixed. If you record the date on which an

error occurred, you can perform an evaluation at any time of the number

of errors detected per day or week. This is just one possible criterion for

determining when testing can be concluded (see below). Discontinuing

testing is a tricky matter as long as the number of errors detected per

week increases or remains constant. When the number of errors detected

is on the decline, you can decide whether there has been enough testing

Agile Quality Management 2 31

or whether the test method is to be changed in order to enhance testing

efficiency again, or whether you should turn to testing other program

components.

The date on which an error is fixed is needed in order to track the period

between error detection and fixing. This period shows how quickly the

developer team is able to respond to bug reports. If the periods between

the detection and fixing of errors increase, this might be a sign that your

developer team is overworked or it might point to shortcomings in the

bug reports. Pursuing the causes is well worth the effort in any case.

5.6 Quality Control

5.6.1 Bug Tracking Database

The quality metrics described above are most easily derived from a

database into which you enter all the errors detected. If the developers

also have access to this database, it will soon become the most important

communication tool between testers and developers.

Each error is entered in this database with a unique ID. The entry should

contain the following information: project ID, name and/or e-mail

address of the individual who located the error the date on which the

error was detected, a description of the error, the steps for reproducing

the error, and particulars pertaining to isolating the error, in addition to

indicating the severity of the error and the priority given to resolving it.

The severity of the error and the priority of fixing it are not entered by the

individual reporting the error but rather by the team member who is in

charge of incoming bug reports and reviewing and evaluating them. The

idea of combining these two particulars into one is not so good because

it can’t be said whether a less serious error should also receive a lower

priority when it comes to error fixing. Sometimes it is important to know

who reported the error. In any event, old errors should have a higher

priority as they increasingly become annoying to the user and the fact

that they still haven’t been fixed in the latest version does little to

enhance the reputation of the developer team.

2 32 Quality Control

Look-up lists Developers can enter the date on which the error was fixed, the module

allocation, and type of error in the same database. When making entries,

it is advisable to use lookup lists with a module breakdown where the

types of errors which may be entered are specified. In so doing, you

facilitate data evaluation considerably, as variations in spellings, wordings,

etc. are precluded.

An error table might be structured like this:

Of course, lots of other particulars might also be conceivable. However,

error capturing and tracking should remain as easy and effortless as

possible. The name of the game is detecting errors and fixing them.

Field Description Data type

ID Unique ID, e.g. consecutive number integer

Project Name of the project (or key) string

Module Name of the module, e.g. “data capturing”, “user
administration”, etc.

string

Area Technical area, e.g. “algorithm”, “integration”,
“input/output”, etc.

string

Who Name or e-mail address of the individual reporting
the error

string

When Date on which the error was detected date

What Description of the error text

Reproduction Steps for reproducing the error (optional) text

Isolation Instructions for narrowing down the problem
(optional)

text

Type Type of error, e.g. “analysis”, “design”, “coding”,
etc.

string

Severity Severity of the error, e.g. on a scale of 4 (see
Chapter 1)

integer

Priority Priority of fixing the error integer

Done Date on which error was fixed date

By Name or e-mail address of the individual who fixed
the error, in the event of queries

string

Table 5.1 Fields of an error tracking record

Agile Quality Management 2 33

5.6.2 Bug Reporting

For an example of error reporting, see the debugging example given in

chapter 4. When you use an error tracking database, the steps for

reproducing the error and the isolation instructions are entered in the

database at the same time. This eliminates the need to fill out another

form.

Enumeration
system

You should agree on a simple enumeration system if several people are

manually capturing bug reports. An easy-to-decipher notation has been

shown to be useful, for example the initials of the tester, date (YYMMDD)

and time (HHmm). The log report number generated for a bug report

from 5:30 PM on April 25, 2002 entered by the tester would be:

MR020425-1730. Since there is little probability that the same tester will

enter two bug reports in the space of one minute, this gives you a simple

system for generating unique bug report numbers.

One last remark about the content of bug reports: State as concisely and

precisely as you can what the error is and how it can be reproduced.

Developers tend to have very little time.

5.6.3 Test Case Tracking

The status of the individual test cases should also be tracked. A

spreadsheet suffices as long as the number of test cases remains

manageable (< 50). The alternative would be to also use a database for test

case tracking. The advantage of this is that the individual test cases can be

more easily linked to the errors detected while running the test cases.

The following details should be logged for a test case: unique ID, brief

designation, status (OK, failed, system error, not conducted), date,

version number (build) of the (last) test run, entry of the test script used,

name or initials of the tester, and a comment. Listing hardware and

system equipment, driver versions, etc. is also useful but can be done in

a comments field. Although making the proper data scenario available is

one of the main tasks of the script, the data scenario needn’t be explicitly

listed in the table. It can be derived from the script. However, the data

scenario should also be indicated in the comments field when no script

has been allocated to a purely manual test case.

2 34 Quality Control

A test case table might be structured like this:

As you can see, the test case table contains some particulars which are

also contained in the table of errors reported. If you set up tables for the

requirements analysis and change management in the same manner, the

redundancy of these details will continue to increase. Consequently a

suggestion is made in Figure 5.4 for integrated test case tracking.

In the UML class diagram in Figure 5.4, I have attempted to integrate the

requirements analysis, change and error management with test case

tracking. The main idea behind this diagram is that the original

requirements along with the components or steps required to implement

them have to be checked including the requisite actions. The result is test

cases at all three levels which can also be designated as functional tests

(for requirements), integration tests (for implementation steps), and unit

tests (for actions).

Field Description Data type

ID Unique ID, e.g. consecutive number integer

Description Short designation of the test case, e.g. “test for
multi-user capability”

string

Project Name of the project (or key) string

Module Name of the module, e.g. “data capturing”, “user
administration”, etc.

string

Area Technical area, e.g. “algorithm”, “integration”,
“input/output”, etc.

string

Tester Name or e-mail address of the individual who
conducted the test

string

When run Date and time of the test run date

Status OK, failed, system error,

not conducted

string or

integer

Plan Test design text

Script Name of the associated test script string

Comment Remarks by the tester text

Table 5.2 Fields of a test case record

Agile Quality Management 2 35

Figure 5.4 Integrated test case tracking

Implementation
steps and
individual actions

During the analysis phase, individual application scenarios are found

which are designed to cover the program, thus resulting in the basic

requirements. Over time, these requirements are supplemented by

incoming change requests and error reports. These requests and reports

can be understood as requirements to be satisfied by the program and

incorporated in integrated test case tracking by way of this generalization

step. Requirements are resolved into implementation steps which are

performed in parallel or in sequence. In turn, implementation steps are

subdivided into individual actions which can be allocated directly to a

team member. Generally speaking, a workload estimate is made at the

implementation step level. The actual times required are captured for the

individual actions.

I purposely used the field names of the error and test case tables in the

class diagram for the class attributes. This is designed to show where the

information incorporated in the tables can be found in the class models.

However, no 1-to-1 projection is possible between the tables and the

class model. For example, the “done” field of the error table is resolved

into a list of all “done” actions pertaining to the implementation steps

allocated to the error report. There is no 1-to-1 projection unless the

Project
Actor
Description
Variations

Use case

Who
When
What
Priority

Requirement

Module
Area
Effort

Implementation step

Type
done
by
time

Action

Plan
Run
Tester
Status
Script
Comment

Test case

1

1..*

1

1..*

1

1..*

1

1..*
1

1..*

1

1..*

Basic requirement Change request
Reproduction
Isolation
Degree

Error report

2 36 Criteria for Concluding Testing

error report is processed in an implementation step and this step requires

only one action.

By the same token, test cases allocated directly to a requirement don’t

feature any details on “module” and “area”. That makes sense as the

requirement impacts several modules and areas for the most part. If you

go in the other direction, however, and look for all the test cases that

belong to a given requirement, additionally, you get the (integration) test

cases and (unit) test cases of individual actions along with the directly

allocated (functional) test cases.

5.6.4 Test Scripts

The various versions of test scripts are also an integral part of test

documentation and tracking. A test script details the steps in which an

automatic or semi-automatic test is conducted.

If a test script has to be modified because the new program version

requires a different procedure, information on the test conducted thus far

is lost. If you still need this information to document test runs, you should

archive the test script in its previous form or print it out. If you continue

to maintain the older program status, it is advisable to create a new test

script. When modifying the older program status, you need the

associated test scripts again to perform regression testing.

In order to keep administration effort within reasonable bounds I

recommend that you also transfer the test scripts into the source code

control system.

5.7 Criteria for Concluding Testing

There are no generally applicable criteria for concluding testing when

quality assurance is integrated in the development process and linked to

existing products (as described above in the section “Working Software”

on page 219). This is because concluding testing is equivalent to

concluding development. Up until then, everything which is produced is

subjected to verification or testing. The team member in charge of quality

decides when an individual product has undergoing “enough” testing.

Agile Quality Management 2 37

Which criteria does this team member have in this case? The key aspect in

making this decision is again the risk associated with the individual

features of the product. The risk assessment conducted for the entire

system also affects each and every resulting product. By the same token,

every team member contributes to the ongoing risk assessment of the

system as a whole through risk assessment of his own products. Here,

too, there are interactions which should be utilized.

Frequent
deliveries

The fear and loathing of a looming deadline will probably quickly be seen

in perspective when a software update is supplied to the customer every

one to two months. Show stoppers — or category 1 errors which bring

everything to a screeching halt — detected right before delivery are

minimized or remedied completely, because 1) all products being

developed are tested immediately and not right before they are due to be

delivered and 2) searching for the most severe bugs is done on the basis

of a risk analysis which is constantly updated.

List of known
bugs

So frequent deliveries means updating the list of known errors frequently,

which should be included with every deliverable. A bug tracking database

can be very helpful if not indispensable here. If you follow the advice

given above for the integrated test case tracking model and enter and

administer the basic requirements, change requests and bug reports as

they are—i.e. as requirements to be satisfied by your program—you are

not only able to supply a list of known bugs with a deliverable but also a

list of the items that have been fixed.

Internationalization and Localization Testing 2 39

6 Internationalization and
Localization Testing

“Think like a wise man but communicate in the language of

the people.”

(William Butler Yeats, Irish Poet)

There are many software companies in the world who have produced

software products for a long time. Some of these companies realized

long ago that they could increase revenue by expanding their business

outside the realm of their native language and country, so they began

offering their products to the rest of the world. Unfortunately, creating

software for many different languages isn’t as simple as having your

product translated by somebody familiar with the source and target

languages. There are many other facets of developing and testing

international software applications that need to be considered and

addressed.

In this chapter I will attempt to illuminate the dark recesses of

international software development and testing and help you avoid some

of the more common pitfalls that companies run into when trying to

create software for the global market.

In order to help you better test international products, I think it is

important to understand some of the underlying issues that exist when

planning, architecting and programming software for the international

market. By understanding a little bit about the underlying structure and

development of a program, I believe you can better test the program and

increase the quality of your foreign language products.

6.1 Localization and Internationalization
Term definitionsBefore we proceed, let me define some terms that will be used

throughout this discussion on international software. I have worked at

many software companies, and it seems that each of them used various

definitions for these terms. Over the years, however, I have found the

24 0 Localization and Internationalization

following definitions to be the easiest to work with and probably the

most accurate.

� Localization

The aspect of development and testing relating to the translation of
the software and its presentation to the end user. This includes
translating the program, choosing appropriate icons and graphics, and
other cultural considerations. It also may include translating the
program’s help files and the documentation. You could think of
localization as pertaining to the presentation of your program; the
things the user sees.

� Internationalization

The aspect of development and testing relating to handling foreign text
and data within a program. This would include sorting, importing and
exporting text and data, correct handling of currency and date and
time formats, string parsing, upper and lower case handling, and so
forth. It also includes the task of separating strings (or user interface
text) from the source code, and making sure that the foreign language
strings have enough space in your user interface to be displayed
correctly. You could think of internationalization as pertaining to the
underlying functionality and workings of your program.

� Localized

During the course of this discussion, when I use this term, I am
referring to programs, documentation, etc. that have been translated
into a foreign language.

� Internationalized

I use this term to refer to programs that have been prepared at the
code level to properly handle international data. An internationalized
program is one that will work everywhere, regardless of language and
the myriad data formats.

� I18N and L10N

These two abbreviations mean internationalization and localization
respectively. You may already be familiar with these abbreviations, but
I will explain them for those who aren’t.

Using the word “internationalization” as an example; here is how these
abbreviations are derived. First, you take the first letter of the word
you want to abbreviate; in this case the letter ‘I’. Next, you take the

Internationalization and Localization Testing 2 4 1

last letter in the word; in this case the letter ‘N’. These become the
first and last letters in the abbreviation. Finally, you count the
remaining letters in the word between the first and last letter. In this
case, “nternationalizatio” has 18 characters in it, so we will plug the
number 18 between the ‘I’ and the ‘N’; thus I18N. This may not be
the prettiest way to abbreviate a really long word, but these
abbreviations are used throughout the industry and are much easier to
type than the two words they are derived from.

If the above definitions are not extremely clear right now, don’t worry.

We will discuss them in detail through this chapter. I will take you

through all the concepts you need to understand in order to effectively

test global software products. Also, the things you will learn here are not

only applicable to Windows desktop applications, but can be applied to

applications on other platforms as well as, web sites, PDA applications,

operating systems, and any other computer related testing you may do.

In the following pages I will discuss some of the issues that people

encounter when planning and developing international software, and

show you how to avoid them. Please note that some of the examples we

will look at are worst case scenarios. I bring them up here since I have

personally experienced several projects where companies were using

these unproductive methods and wasting a lot of time and money, and I

want to help you avoid these problems.

Many companies fall somewhere in the middle of the spectrum between

these worst case scenarios and the best methods for creating

international software. Some companies do better than others.

Hopefully, after you finish this book, you will be able to help move your

company into the best-practices section of the spectrum. You will help

them make better products and save them money in the long run; and

that is always a good thing to have on your resume.

6.2 International Planning and Architecture

As I said earlier, I think it is important to understand some of the issues

that engineers and developers face when creating international software

in order to better test international applications. As with any kind of

development, global software development can be done in many

24 2 International Planning and Architecture

different ways. Some of these methods will cause developers and testers

large headaches and cost the company a lot of money. Other methods

will be much easier to maintain and cost the company significantly less.

Create a
project plan

The first step to creating any software is to create a project plan. You

need to know what you are going to create, how you are going to create

it, and how long it will take. Planning is a crucial first step to creating any

project, so let’s start by looking at some of the issues with planning an

international software program.

6.2.1 Lack of International Focus in Project Plans

One of the biggest and most costly mistakes companies make is they plan

and architect their products thoroughly, but they only take their native

language into consideration during this critical phase of the product

development cycle. These companies plan to develop their software

natively and then later alter their software so it will run in foreign

environments. Often times they don’t even begin working on the

international versions of their product until they are only a month or two

away from releasing their native language version. This causes delays in

their international product releases and usually results in multiple code

bases, which are prone to error and costly to maintain.

Separate program
functionality from

user interface

With a little proper planning up front, these mistakes can easily be

avoided. If companies will plan to code and test for international markets

from the outset, it will make a huge difference in the quality of their

product and the final cost will be significantly less. If companies separate

the functionality of their program from the user interface and

presentation the end user sees, they can eliminate most, if not all, of the

mistakes that lead to costly international software that is difficult to

maintain. If companies will look at their native language and all the

foreign languages that they are planning to support as modules that will

be inserted into their core product instead of trying to tweak a native

language product to create a foreign language version, they would be

much better off.

Internationalization and Localization Testing 2 4 3

6.2.2 Why Native Language Centric Plans are an Issue in
Development

As I mentioned previously, project plans often focus exclusively on the

native language version of the software until about the time the code is

deemed code complete. At this point, they start working on

internationalizing their source code so it will work on various language

platforms. Under this type of a project plan, developers often fail to

consider international characters, data formats, and many other things

relating to international software. For instance, they may hard code their

time and date formats, or base their data handling of these time and date

objects on a specific, usually native, format. When they do this, their

code will be broken when the software is run on a foreign operating

system. Fixing these issues takes time, and is one of the reasons that

international software products usually ship two to three months after

their native language counterparts.

Time and date
formats

Above, I mentioned time and date formats, so I will use them here to

illustrate why failing to consider internationalization from the beginning

of a project will be a problem. First let me explain the date formats used

in a few different countries so my example will make sense, then I will

narrate a simple example of code that fails to take foreign date formats

into consideration.

In the United States, we use the short date format “month/day/year”.

Therefore, the short date for Christmas in the year 2010 would be written

12/25/2010. In Germany, however, they use the format

“day.month.year”. Therefore, the short date for Christmas in Germany

would be 25.12.2010. Finally, in Japan, they use the format “year/month/

day”, so our Christmas date is Japan would be written 2010/12/25.

Now, imagine that we have a program that keeps track of user’s

birthdays, and we are going to sell this program internationally. In our

database, we are storing dates based on the format used in the United

States. If a new customer from Germany installs our program and enters

his birthday, February 10, 1969, in the short date format used in

Germany (10.2.1969), our program will think he was born on October 2,

1969. It gets even worse. What if our customer was born on

February 23, 1969 (23.2.1969)? Then our program will think he was

24 4 International Planning and Architecture

born on the second day of the 23rd month of 1969. Of course this date

is invalid and will be rejected by our program. Either way, our new

German customers will want their money back; a practice which is not

conducive to increased revenue and employee bonuses.

There are many other areas of development where a lack of proper

international planning can cause issues. We will go over several of them

in the next section.

6.2.3 Why Native Language Centric Plans are an Issue in
Testing

A lack of proper international focus in a project plan also negatively

affects testing. If the testing team has only planned to test the product in

their native language until localized builds have been created, which is

often times the case, they don’t have enough time to properly ensure

that the program works correctly in foreign languages. This is another

reason why international versions of a product are usually delayed for up

to 90 days after the native language product is released.

Even if testing does want to test for internationalization issues from the

outset of the project, they can’t do it unless an effective

internationalization plan is created and they have the support of project

managers and development. Without the support of all departments

working on the project, testing will be doomed to doing

internationalization testing towards the end of the product cycle; a time

when they should only have to focus on localization issues.

Avoid multiple
code bases

One negative side effect of this late-in-the-game testing practice for

international software is multiple code bases. The English product usually

ships well before the international product, and inevitably the testing

department finds defects in the international builds once the native

language product has shipped. To fix these defects, developers often

times choose to branch the code. As I mentioned before, multiple code

bases are costly and difficult to maintain. We will discuss these things in

greater detail in the next section.

Internationalization and Localization Testing 2 4 5

6.2.4 What the Plan Should Look Like

Below is a diagram that depicts the project plan that many companies

tend to follow when creating software (Figure 6.1).

Figure 6.1 Traditional Software Development Schedule

Notice how development begins programming a little before testing. This

is not related per se to internationalization, but when we talk about

international testing in detail, I will discuss some testing practices that will

allow the testers to begin work on the same day as development; if not

earlier.

Now let’s look at the internationalization aspects of this plan and discuss

what is wrong with them.

First of all, notice how development switches into I18N mode after code

complete (where all features in the program have been developed and no

new features will be added to the program). It is this switch that can

cause multiple code bases, and almost always causes international

products to ship later than the native language products. Another thing

to note regarding development, I have used a bar with hash lines that

begins at the “Development Begins Next Version” step of the plan. This

24 6 International Planning and Architecture

is meant to indicate that development will not be available full time to

work on bug fixes for the international releases of your software. This is

the part of the plan that causes features to be left out of international

versions of your software.

In regards to testing, I used a bar with a square hashing pattern to indicate

that testing would be working with development on internationalization,

but not full time, since they still are working on the native language

release. Testing must work part time on internationalization testing while

still testing the native product until it ships. Once the native language

version of the product ships, testing can begin testing the international

versions full time.

Another thing of note is that testing does not begin testing international

products until after localization has started and they have localized builds

available. Testing should be done much earlier in the product cycle than

this.

The biggest thing to note regarding this type of plan or schedule is that

the international products ship later than the English ones. Wouldn’t it

be better if you could ship all of your products on the same day? Of

course it would.

Now let’s look at what a schedule might look like when proper

consideration is given to internationalization and localization (Figure 6.2).

Figure 6.2 Ideal Software Development Schedule

This schedule looks a lot simpler, doesn’t it? Of course these examples

are both simplified, but the principles are the same. Your real plans will

Internationalization and Localization Testing 2 4 7

be smaller, too, with a little alteration to your software development and

testing paradigms.

The first things you will notice in the diagram is that testing begins at the

same time as development and internationalization is no longer a

separate task, as it was in our previous example. Another good benefit is

that testing for localization issues begins before the software has been

localized. This is done using a pseudo build, which we will discuss later.

Regarding localization, notice how it is shorter in this graph than in the

previous one. This is because testing and development will have flushed

out most of the localization issues before the software is even translated.

This makes localization much easier for you and the localization vendor.

Most importantly, notice that there isn’t a separate native language

release and international release. Under this plan, all languages are

shipped at the same time. They use the same code and all versions have

the exact same functionality. This should really please your international

customers.

Planning is an integral part of software development and development

can’t effectively begin without a plan, however, the plan is not a magic

spell for success. Proper planning alone cannot solve your international

issues. There must be a change in the way you are developing and testing

your software, and a good plan can facilitate this change.

Let’s move on now and talk in detail about some of the software

development aspects of international software that can be problematic

and then let’s look at some solutions. Hopefully, as we discuss these

issues, you will see that you can plan for them and eliminate many of

them in advance.

6.3 International Development Issues

6.3.1 Problems Working With Strings

VariablesFor those who do not have any experience in programming, let me first

mention variables. A variable is a place in the computer’s memory that a

developer creates to store information. A programmer can also retrieve

that information at a later time, or manipulate it as he or she sees fit.

2 48 International Development Issues

A variable is kind of like your bank account. You can go to the bank and

create a space, or an account, for yourself that you can store money in.

Once you have created that space, or account, you can deposit money

into it whenever you want to. You can also go back to that account and

get money out. You can manipulate the account by adding or subtracting

funds from the account. Another thing to note is that you can only store

one kind of thing in your bank account; money. If you try to store

sandwiches in your account, the bank teller will tell you in no uncertain

terms that you cannot do that.

Variables work the same way in many languages. You can insert data,

extract data, manipulate data, and you can only store one kind of data in

that variable. If you create a variable to store numbers, for instance, then

you cannot store a sentence within that variable. If you try to store data

of the wrong type into a variable, the compiler, much like our chimerical

bank teller, will tell you in no uncertain terms that you cannot do that.

So how can variables be a problem when creating global software? Well,

it isn’t so much the variables as what the programmer does with them.

For example, if I have a variable called PromptForName that is supposed

to hold the string “Please Enter Your Name:”, and I write the variable

assignment like this in my code:

PromptForName = “Please Enter Your Name:”

Problems
resulting from

hard coded
strings

Then every time I compile my code, the string becomes part of the

executable. This is what is called a hard coded string.

Hard coded strings are the bane of global software for several reasons.

First of all, if I have hard coded all of my program’s strings, it is going to

be much more difficult for a translator to translate my software into other

languages, and the translator will be much more likely to miss something

since they have to rummage around in my source code. I also run the risk

of a translator accidentally translating portions of my code, which may

cause it not to compile anymore.

An even bigger problem is that I will have one version of my code for

each language that I want to produce. Let’s say that I want to support

English, the most common Western European languages, German,

French, Spanish, Portuguese, and Italian, as well as the Asian languages

Internationalization and Localization Testing 2 4 9

Chinese, Japanese and Korean. Since there are two different versions of

Chinese (Traditional and Simplified), I now have to manage ten different

code bases.

You may be asking why localizing my software in this manner is a

problem. There are a few reasons. Let’s go over them.

� Compile Time

The first problem you will run into is compile time and the costs
associated with it. I have worked on large programs that can take
many hours to compile. If I only have one build machine to use, I may
have to spend days compiling my program ten times for all the
different markets. If I choose to buy a different machine for each
language so I can build all the languages at the same time, then I have
the cost of each machine plus the cost of maintaining build
environments on ten different machines; which can be quite
expensive.

� Defects

Fixing defects can be quite costly if I have hard coded all my strings and
have a different code base per language. Imagine this scenario. A
tester has been testing and has found a severe bug in the English
product. Development debugs the problem and fixes it in the English
code base. Now, the developer also has to go into the remaining nine
code bases for the foreign language builds and fix the same bug in each
of those. Then, the build master must go and rebuild all ten languages
again. This can be very costly.

Imagine if the programmer makes a mistake and forgets to fix the bug
in the German code base. When internationalization testers look at
the program, they will log the same defect again; only this time against
the German code base. If another developer is assigned to fix the
defect, or the original developer forgets that he has already fixed the
defect elsewhere, someone in development will debug the issue in the
German code base, and have to go once again into the other code
bases to make sure that the bug has been fixed everywhere.

This is one of the most frustrating scenarios that developers must deal
with when using multiple code bases.

� Debugging

If you are maintaining ten different code bases for all of your language
builds, you are more prone to make mistakes in one of the code bases.

2 5 0 International Development Issues

Therefore, during the testing process, if a defect is found in one
language you have to debug the defect in all the languages to ensure
the bug doesn’t exist in any of them. This also is very costly.

� Testing

Testing is also greatly affected by hard coded strings and multiple code
bases. The testing department now has to run full test suites on each
and every language. The testing department must not only ensure
proper localization, but also must ensure the program’s core
functionality in ten different language environments. Therefore, the
work load of the test department has suddenly increased ten fold over
what it should have been. This results in either longer work hours and
weekend work, or hiring temporary contract testers to help during the
localization test cycle. This extra work can be quite frustrating and
costly.

As you can see, dealing with ten different code bases can become quite a

costly task. It is unfortunate, but many companies create localized

products using these methods. By hard coding all of their strings, they

subject themselves to guaranteed delays in their releases and vastly

increased development costs.

Separate strings
from code

So, what can be done to make things easier and more cost effective? The

most important thing is to separate the strings in your program from the

rest of the code. This will be a huge benefit because now we only need

one code base and we can still produce the ten different languages we

mentioned earlier.

There are several different ways of separating strings from code. The

basic idea is that you put all of your strings in one or more files that are

separate from your code base. These are often called string tables,

message files, properties files, etc. depending on which method of string

separation you are using and which programming language you are using.

Sometimes these files are compiled into libraries that can be linked into

your code dynamically when you run the program, and other times these

files are standard text files, which are parsed by your program at run time

and loaded into the program dynamically. This method is a little less

efficient, but it is still very usable.

Internationalization and Localization Testing 2 5 1

Before we go on, let me illustrate one mistake that companies often make

when they try to separate their strings from their code. Sometimes they

will put the strings in a separate C or C++ header file and then compile

the strings into the program’s executable. This method is better than

having your strings hard coded in your program code, and it does make

localization easy because the translator doesn’t need to rummage around

in your source code, but it does not eliminate the need to recompile your

program once for every language. Also, although you do not necessarily

need to have multiple code bases if you use this method, for some reason

it usually works out that you do. I would avoid using this method of

separating strings from your source code. It does solve the translation

issue, but usually doesn’t solve any of the other issues that we have

discussed so far.

Dynamic libaries
and text files

Now, to get back to our discussion, it is best to either compile your

strings into separate dynamic libraries, one for each language, or to have

a text file for each language that can be parsed by your program during

run time in order to present the correct user interface language to the

user. Let’s take a moment and look at the structure of these language

files.

Key-value pairs or
hash tables

Usually, the file with the strings in it consists of two values for each string

entry. One value is the string itself, and the other value is a key to access

the string. This combination is called a key-value pair or a hash table. A

file containing these key-value pairs could look something like this:

MLoginMessage=“Good Morning”

NLoginMessage=“Good Afternoon”

ELoginMessage=“Good Evening”

Prompt = “Please enter your name: ”

Let’s consider this file format example and the variable assignment

example we saw a few pages back, when we demonstrated a hard coded

string. Now that the strings are in a separate file, the developer no longer

needs to hard code them in the program’s code. Instead of typing the

following line in the code, which is a hard coded string:

PromptForName = “Please Enter Your Name: ”

2 5 2 International Development Issues

The developer would instead access the string from the remote file or

library using its key, which in this case is called “Prompt”. The same line

of code would now look like this:

PromptForName = Prompt

Load strings
dynamically

The string will now be loaded dynamically from the correct language

string file when the program runs, and the correct language version of the

string will be displayed to the user. There will be one language file for

every language that you want to support and the key to the string “Please

Enter Your Name:” will be the same in each file; Prompt. Only the actual

string value will be translated into each language, so all the program has

to do is determine which file it needs to pull the string from.

In reality, it isn’t as simple as creating these language files. The

programmer must include logic in either the setup program or his

program that will detect the locale (or language) of the operating system

that the program is running on, and then load the appropriate language

file or dynamic library to pull the string from. However, creating this logic

isn’t very difficult. In fact, programming environments like Java and

Microsoft’s VisualStudio .NET make it quite easy.

Let’s compare the benefits of writing code in this manner as opposed to

using hard coded strings in our programs.

� Compile Time is Reduced

Our compile time is significantly reduced because we no longer have

to recompile our program once for every language that we want to

support.

If we are using text-based message or properties files, we only need to

compile our main code base and then tell the installer to put the

language text files in the appropriate locations to achieve support for

our ten different languages.

If we are using compiled dynamic libraries to store our strings, then we

need to compile one dynamic library for each language, but these

libraries will be small and will compile in a matter of minutes, as

opposed to possibly hours if we compiled ten different code bases.

Internationalization and Localization Testing 2 5 3

� Testing Time is Reduced

We can test our code base on multiple language platforms a long time

before localization has been completed to ensure that our software

handles foreign text, currency, date and time formats, parsing, etc.

correctly.

Another benefit is that if a defect is found during testing, development

only has to fix that defect in one place, and testing only has to validate

the fix in one place as opposed to testing ten different code bases to

make sure the defect has been fixed in each one.

� Localization Testing is Easier

Under the hard coded string method, if a localization defect is found,

meaning that testing has uncovered a string that wasn’t translated or is

incorrect in some way, the string must be fixed in the code base,

another build must be produced, and testing must at least perform an

acceptance test pass on the code to make sure nothing was broken

during the simple fixing of a string.

Using the method of separating strings into different files, the string is

either changed in a simple text file, or changed in the dynamic library’s

string table and then recompiled. Either way, the entire program does

not need to be recompiled in order to test the fix; thus saving a lot of

time. Also, the code base has not been touched, so an acceptance test

is not required; although it is always a good idea if you have the time.

You can never over test a product.

� Shipping Costs are Reduced

If you can get all your languages into small text files or small dynamic

libraries, you can usually ship all of your language versions on one CD,

or at least have one CD for English and European languages and one

for Asian languages. This is more cost effective that creating different

CDs for each language.

� Shipping Products Simultaneously

By separating your strings from the source code, you can begin testing

for language issues much earlier in the development cycle. With

proper planning, this can result in the ability to ship all of your

language versions simultaneously, instead of shipping the localized

2 5 4 International Development Issues

versions of your software sixty to ninety days after your native version;

as is done all too frequently. The benefit is that you can begin realizing

the revenue of foreign markets at the same time as your native market,

instead of two to three months later.

� Program Functionality is Equal across Language Products

When utilizing the error prone traditional software development

method, what usually happens is some functionality is left out of at

least some of the foreign language builds due do defects and time

constraints.

The problem is that localization happens towards the end of a

product’s development cycle. Unfortunately, when there are multiple

code bases, proper internationalization development and testing also

happens towards the end of the product development cycle. Because

of this, testers don’t get to test the foreign language products until

localization has taken place and internationalized foreign language

builds have been created. Inevitably, about the time the test team

finishes their first test pass on the foreign language builds, the native

language product has been shipped and developers have been moved

off of the project to work on the next release and are often times

unwilling or unavailable to work on the foreign language products.

Since developers often do not have the time to fix defects as diligently

as they did during the native language product cycle, the foreign

products usually suffer. Functionality is often times sacrificed to meet

deadlines and accommodate developers’ schedules under the

traditional software development method.

Under this multiple-code-base method of software development,

foreign language versions are almost always created as an afterthought,

which often times leads to inferior international products.

On the other hand, by separating strings and using only one code base,

testers can begin testing for foreign language defects from the very

outset of their test cycle. There is no longer any need to have a

separate test cycle for the native language product and the localized

products. They are all the same product now. They are the same code

base.

Internationalization and Localization Testing 2 5 5

Since there is only going to be one code base, then all language issues

must be addressed in that code base and these issues should be

identified as early in the development cycle as possible. At the end of

the product cycle, when localization is usually done, testers have

already flushed out all the internationalization issues and development

has hopefully fixed them. This leaves only the need to check the

translations; not the whole product.

� Pseudo Language Builds

Another benefit of separating strings from the rest of the code is that

testers can create what is called a pseudo language build. What this

means is that the native language string files are run through a parser

that changes them in some way so they can easily be identified by the

testing department. Next a build is created using these strings so they

show up in the user interface instead of the English strings. This helps

find strings that haven’t been put into separate string files, problems

with displaying foreign text, and problems with string expansion

(which we will talk about later) where foreign strings will be truncated

if an insufficient amount of space has been allocated for the strings.

Ideally, the altered strings are still readable to the native language

speakers, but they account in some way for string expansion and also

foreign text. For example, a pseudo language version of this string:

This is an example string.

Would look something like this:

Thîs îs än êxämplê strîng]]]]]]]]]]]]]]]]]]]]]]*.

Notice how the string is still readable to English speakers, but it shows

testing early on that the program can correctly display foreign text and

it also shows testers that the space allocated to hold this string in the

user interface is sufficient to hold the foreign versions of the string

once translation has taken place. If the asterisk at the end of the string

is not visible during testing, then testers will know that the space

allocated to hold that string is too small and the string has been

truncated. They can log defects against this and fix the problem early

on so that when it comes time to translate the software, these sizing

2 5 6 International Development Issues

issues have already been taken care of. Also, if testing finds a string

that is not in this format, they know that the string is hard coded and

has not been separated into a different file.

Pseudo language builds are a key part of creating quality localized

software. The help testing to identify defects early in the development

cycle, and get them fixed. When it comes time to localize the product,

these internationalization issues have already been taken care of.

Usually, most, if not all of the defects that are found in the localized

products are mistranslations and can be fixed by the localization

vendor.

� Customer Service and Technical Support Benefits

Customer Service and Technical Support departments will also benefit

from the company writing international code correctly. They will no

longer have to worry about issues that are language specific in your

software. They also won’t have to deal with complaints from

international companies who buy your product and are upset because

it doesn’t work the same for their Japanese office as is does for their

U.S. offices because some features had to be cut for the Asian language

releases.

As you can see, there are a lot of benefits to architecting and writing code

using separate language resource files instead of incorporating strings into

your source code. Your code will be more stable, easier to maintain, and

will be globally consistent. You will have faster times to market for your

international products and be able to realize the revenue from your

efforts much sooner. Operating costs will also be reduced significantly

since you only have to focus on one code base.

Coding and architecting your software correctly for an international

market is somewhat different from the standard paradigm of software

development. Sometimes there is a little more work involved up front,

especially when there is already some existing code, but believe me, it

isn’t that hard to do things right, and the benefits far outweigh the small

amount of extra effort.

Internationalization and Localization Testing 2 5 7

6.3.2 Problems Working With Dialogs – String Expansion

I briefly mentioned this earlier, but I would like to discuss in greater detail

the problems of string expansion.

When words or sentences are translated into other languages, most of

the time the resulting string will be either longer or shorter than the

native language version of the string. To illustrate this, please look at the

following two images. The first image (Figure 6.3) shows a dialog in

English, which allows a user to select an Authorized User List from the

drop down. This dialog looks fine in English.

Figure 6.3 English example dialog

Let’s see what happens, however, when we translate the string

“Authorized User List:” into German (Figure 6.4). I have placed a lighter

version of the German translation for this string under the combo box in

order to show just how much of it has been cut off.

Figure 6.4 String expansion in German version

Notice that the last letter of the third word and the entire forth word

have been truncated because I didn’t leave enough room for the German

version of the string. You will also run into the same or similar problems

in other languages as well

Adjusting the
layout vs. using
separate resources

There are two solutions to this problem. You can either take into account

the space needed for string expansion, adjusting the layout of your dialog

accordingly, or you can separate your dialog resources into separate

dynamic libraries in much the same way we talked about earlier regarding

25 8 International Development Issues

strings. In fact, you can even place the dialog sizing information in the

same files as your string resources if you are using dynamic libraries. Let’s

talk about the plusses and minuses of each method.

Accounting for String Expansion via Layout

A long time ago, IBM came up with a very simple standard for estimating

the space required for string expansion when creating user interfaces.

Here is a simple table (Table 6.1), which is one of the many variations

based upon IBM’s standard and illustrates the string expansion guidelines

you should follow when determining the space needed to accommodate

string expansion. This table uses English as the base language and

calculates the space requirements for other languages. There are other

tables that are similar but slightly different, but these are the guidelines I

usually use.

Using the information on this table, let’s revisit the strings in Figure 6.1

and Figure 6.2. Remembering to count all the characters, including

spaces and the colon, the original English string (“Authorized User List:”)

is 21 characters in length, and the German version of the string (“Liste

der berechtigten Benutzer:”) is 32 characters in length. If we calculate

21 * 2.2 and round the result to the nearest whole number, we get 46. As

you can see, 46 characters are plenty to accommodate the translated

German string. You may be thinking that 46 characters is overkill since

the German string only needs 32; and you’d be right. However, you need

to remember that this formula takes into account all languages. You may

translate your product into a language that needs all 46 characters.

Number of Characters in the
English String

Amount of Space Required to
Accommodate String Expansion

1 to 6 15 Characters

7 to 25 2.2 times the number of characters

26 to 40 1.9 times the number of characters

41 to 70 1.7 times the number of characters

More than 70 1.5 times the number of characters

Table 6.1 String Expansion Guidelines

Internationalization and Localization Testing 2 5 9

The idea behind using formulas to estimate the space necessary to

accommodate string expansion in your user interface is that you would

create your dialogs so that all languages will comfortably fit without you

having to adjust the dialog size and recompile your program for each

language. Some languages and environments don’t support extracting

dialog size information into separate resources, so the generic, one-size-

fits-all layout method is all that is available to some programmers (this is

not the case most of the time). This method of dealing with string

expansion can be effective, but also frustrating if you don’t create your

dialogs correctly to begin with.

Let’s look again at the German version of our example dialog (Figure 6.5).

This time, however, we have taken into account the amount of space

needed to accommodate the entire German string.

Figure 6.5 String expansion taken into account

As you can see, there is approximately 46 characters worth of space

available to my German string, so there is plenty of room for it to be

displayed. It is almost too much room, but not really that bad. However,

if we look now at the English version of this dialog (Figure 6.6), we are

going to want to start logging some bugs.

Figure 6.6 English dialog with room for string expansion

There is still 46 characters worth of space available to my English string,

but my English string needs less than half of that space. Since there is

only one stand alone string and one stand alone combo box on the page,

26 0 International Development Issues

I suppose it is easy to determine that they go together, but the dialog just

looks stupid.

When using a single layout to accommodate all the different language

versions of your program, you will want to come up with a layout that is

not going to be affected as much by string sizes. One thing you don’t

want to do is place labels to the left of text boxes, combo boxes or other

controls. Instead place them above.

Let’s look at another example of our dialog (Figure 6.7) and see if this

layout works a little better. In this example, I am going to use a pseudo

language string to show what they would look like if you were testing a

build created with them, and also to show the length of the English string

and also the maximum length of the allocated space, which is 46 in this

case.

Figure 6.7 Pseudo language dialog

As you can see, the length of the string becomes a non-issue when the

dialog is laid out in this manner. Any length of language string should fit

quite nicely above the combo box, and the dialog will still look nice.

Design dialogs to
accommodate

expansion

This example is kind of a trivial one. Most dialogs and user interfaces that

you test will have multiple user interface elements on them. It can be

tricky sometimes to construct a dialog that will accommodate any length

of string and still look nice. This is the drawback to creating international

software using a single layout that takes string expansion into

consideration; attractive user interfaces can be difficult to create. The

plus side of this method is that you only have one dialog to worry about

and you can test and fix sizing problems with the dialog very early in the

development cycle.

If your software product is going to use this method for laying out your

user interface, either out of necessity or choice, it is absolutely imperative

that you create pseudo language builds. You must identify string

Internationalization and Localization Testing 2 6 1

expansion issues such as truncation or inelegant interfaces early in the

development cycle so they can be fixed effectively. If you wait until the

end, when you have actual localized builds to test, I guarantee these

layout problems will cause your product to ship late.

Accounting for String Expansion via Separate Resources

Another method that can be used to accommodate string Expansion is

separating your dialog resources into separate dynamic libraries.

Microsoft’s development tools make this easy to do, so if your company

writes Windows applications they can easily use this method to create

their user interfaces. Other languages, tools and environments also

support creating interfaces this way.

Just as we talked about doing with the strings in our program, it is

possible to put your dialog information in a separate dynamic library that

is loaded into your program at run time. Also, just like with the program’s

strings, you need to create a separate library for each language. This

means that each language’s user interface can be sized differently.

Separate dynamic
libraries allow
custom dialogs for
each language

The positive side of creating dialogs and user interfaces using this method

is that you can customize each language’s layout; making each language

version of your software look as elegant as possible. The drawbacks to

doing your user interface this way is that you have to resize one set of

dialogs for each language that you want to create, and you can’t really

make the dialogs look their best until after the first drop from localization

has been finished since you don’t know exactly how long the strings are

going to be for each language. This method takes a little bit more effort

sometimes, but I think your dialogs end up looking better. If you test

your program for internationalization issues from the outset, you should

have plenty of time to deal with resizing these dialogs towards the end of

the development cycle, when localization usually takes place.

6.3.3 Builds and Installers

Another important aspect of developing international software is having a

build environment set up to support it. What this usually entails is

creating an environment that supports a single version of your code, and

multiple versions of the language files; whether they be dynamic libraries

2 6 2 International Development Issues

or standard text files. Every time a new build is created, the code base

along with all the language files should be created.

Design of setup
program

The setup program should also be designed to support these files, and

should either automatically detect which language file should be installed

based on the user’s operating system’s language settings, or the installer

should install all the language files and the program itself should decide

which resources to load when the program runs.

The language files can all be in your native language or pseudo code to

begin with, but as a tester, you should test the product on all the

language platforms you plan to support and make sure that the dynamic

resources are loaded correctly.

If your build master or the maintainer of your setup scripts fails to create

a build environment and installer that will handle multiple language

resources, then your build process will be broken, and you should log a

defect against the build environment.

A proper build environment and installer are things that should be

planned for from the outset of the development cycle.

Before we go on, just for the sake of clarity, let’s look at an example of a

Windows directory structure (Figure 6.8) that we might find on an

installation CD for a product that has been correctly built using the

methods of string extraction that we have discussed so far. Also note that

the build environment itself may have a similar directory structure.

Figure 6.8 Directory Structures and Language Codes

Internationalization and Localization Testing 2 6 3

Given this structure, here is what should happen during the installation

process. The installation program would detect the user’s operating

system’s language settings and then get the correct language files from

the appropriate language directory (such as FRA for French). The setup

program would then install these language files along with the rest of the

program on the user’s computer. This is all done automatically by the

installer and the user only sees the localized version of your software in

the same language as their operating system.

Another option that I sometimes see used, especially on programs that

run from a server, is to install all the different language files onto the

computer instead of just installing one language. Then, the language is

either selected automatically by the program based on the locale of the

client machine, or there may be an option screen built into the software

that allows users to select which language they wish to use. In this case,

the language selection logic is done by the program itself and not by the

setup script.

Language codesBefore continuing, you may be wondering about the three letter codes I

used in the example directory structure above. They are language codes

that are commonly used by Microsoft. Other languages and

environments may use different codes.

Below are two tables that illustrate both the Microsoft standard language

codes (Table 6.2) and the Java standard language codes (Table 6.3). I am

only including codes for the languages you most often will localize

products into. There are many other language codes available to you as

well. If you are planning to support a language that is not in the list, such

as Arabic, Hebrew, or Russian, and are unfamiliar with the language

codes, you can find them by visiting Microsoft’s website, Sun’s Java web

site, or by searching on the internet.

CHS Chinese Simplified

CHT Chinese Traditional (Taiwan)

DEU German (Germany)

ENU English (United States)

ESM Spanish (Mexico)

Table 6.2 Microsoft language codes

26 4 International Development Issues

Notice that Microsoft has built language and country codes into their

three letter language code scheme and Java has separated the country

from the language code by an underscore. In fact, in Java you can leave

the country codes off all together and only use the two character

language code if you would like to. For example, if you are only

concerned with the Spanish and German languages and don’t care about

the country differences, you only have to use the first two letters “es” for

Spanish, “de” for German, and so on.

ESN Spanish (Spain - International Sort)

ESP Spanish (Spain - Traditional Sort)

FRA French (France)

JPN Japanese

ITA Italian

KOR Korean

PTB Portuguese (Brazil)

PTG Portuguese (Portugal)

de or de_DE German (Germany)

en or en_US English (United States)

es_ES Spanish (Spain)

es_MX Spanish (Mexico)

fr or fr_FR French (France)

it or it_IT Italian (Italy)

ja or ja_JP Japanese

ko or ko_KR Korean

pt_PT Portuguese (Portugal)

pt_BR Portuguese (Brazil)

zh_CN Chinese Simplified

zh_TW Chinese Traditional (Taiwan)

Table 6.3 Java languages codes

Table 6.2 Microsoft language codes (cont.)

Internationalization and Localization Testing 2 6 5

Region codesJava also has one more level of lingual granularity called a region code.

These are useful if you are supporting different dialects that exist in a

single country. Personally, I have never seen programs written with this

level of locale awareness built into them, so you will probably never see

or use the region codes available in Java.

Character Sets and Codepages

Character sets and codepages are another bothersome aspect of creating

international software. If you have been testing long, I’m sure you have

seen strings that look like blocks, ticks, and smiley faces. This happens

when you try to view the characters from one language’s character set

when your machine is using a character set for another language.

Single-byte vs.
double-byte

In the United States, we use a single byte codepage. Japan uses a double-

byte codepage. Single-byte codepages can hold a maximum of 256

different characters. Asian languages, such as Japanese, have far more

than 256 characters. To support these languages, the codepages must use

two bytes to represent one character. By using this double-byte method,

the Japanese codepage can support up to 65,536 different code points.

Because different countries and languages use different code pages, it is

sometimes difficult to share data between different languages. If my

Japanese friend writes me a letter in a codepage based program, even if I

have the same program on my English machine, I most likely will not be

able to read what my friend has written.

5C charactersAsian languages in particular can be problematic, especially if

programmers are trying to write their own routines for handling the

double-byte characters that are used in Asian languages. One problem

that programmers run into sometimes is with what are called 5C

characters. 5C is the hexadecimal value of a backslash character in

English. Unfortunately, several Asian language characters end in the

hexadecimal value 5C. What happens is that programmers will be parsing

an Asian string, they will run into the hexadecimal value 5C, and the

program will think it has hit a backslash and will destroy the rest of the

string. This is not as big an issue if you are using a language library created

by a third party. These issues have usually been taken care of for you. It

is something that you, as a tester, will want to look out for though. If you

26 6 International Development Issues

see a string that looks fine until half way through, you will know what has

most likely happened to it.

Another problem that can look the same from a testing point of view is

where the programmer is deleting the last character in a string and forgets

to check whether it is the first or last byte of a double-byte character, and

only deletes the trailing byte. This will cause garbage to be displayed on

your screen. Most libraries handle this automatically, so you will most

likely only see it when programmers try to handle double-byte text in

their own custom libraries.

Unicode standard There is a method that gets around a lot of the issues with codepages and

Asian languages. This standard is called Unicode. Unicode supports

many different written languages in the world all in a single character

encoding. In fact, it even supports some fake languages such as Klingon.

Depending on what language and programming environment you are

using, writing a program so it supports Unicode instead of codepages is

fairly easy. In Visual C++, for instance, it is simply a matter of setting a

compiler flag and using certain string handling macros. These are well

documented in the Microsoft Developer Network documentation, and

are fairly easy to use.

Unicode is a very useful standard since it will probably support all the

languages you want to translate your software into, however it can cause

some problems in the Asian languages if it is not used correctly. I work a

lot with Japanese (both the language and the people) and programmers

in Japan hate Unicode because they find it hard to deal with. However,

there are many excellent Unicode programs used in Japan that have not

caused anybody major problems. An example of this would be Java. Java

is quite popular in Japan, and it uses Unicode by default.

There are several reasons the Japanese, and probably other Asian

programmers, have this acrimony towards Unicode. First of all, the

number of characters that Unicode can support is limited and the Asian

languages are quite vast. Since China, Japan and Korea all use what the

Japanese call Kanji, the Unicode standard, to save space and

accommodate many languages, has the characters from all three

languages lumped into one section of the Unicode encoding. This is a

Internationalization and Localization Testing 2 6 7

problem because the characters in these three languages are sorted

differently and sometimes the characters are written differently,

therefore, a character can be displayed that doesn’t look quite right. This

unification of the languages causes other concerns in Asia as well, but

these are beyond the scope of this book.

Another problem occurs if you are converting from the local codepage to

Unicode and back. Sometimes this round trip conversion will change one

character into a different one. I remember one time seeing the Japanese

word for “view” change into the word “boil”; which didn’t really convey

the appropriate meaning in the program at all.

One of the reasons people convert between local codepage and Unicode

is because of the way networking works. Networking packets are sent

using single byte streams and Unicode doesn’t fit too well into that mold.

But as we can see, this conversion between codepage and Unicode has

the potential to be a problem for Asian languages.

UTF8There is a solution to this problem that you may have run across if you

have used the internet to any degree. This solution is called UTF8. UTF8

is a variable length encoding of Unicode that can be easily sent through

the network via single byte streams. If you are creating a network

program that must pass data between clients and servers on a network, it

is better to convert from Unicode to UTF8 than to convert from Unicode

to codepage. This doesn’t solve the problem of a few characters being

written a little differently than people are used to, but it does solve the

problem of characters magically changing into something else.

I know I have mentioned some of the foibles of Unicode here, but please

don’t misunderstand, it really is a great encoding to use if you want to

create international software; especially international software that can

easily share data between disparate languages.

6.3.4 Achieving Success through Proper Planning and
Architecting

Okay, we have discussed in detail a few of the issues that companies can

run into when creating international software from an architectural and

development point of view. We have focused mainly on the separation

2 68 International Development Issues

of strings from the rest of the source code, dealing with string expansion

in the user interface, and build and installation issues. I have also shared

several solutions to these issues throughout the last several pages. Now

I would like to put everything together and summarize several steps you

can use when planning a project on your own or within your company

that will help overcome many of the common obstacles of

internationalizing and localizing your code.

Before listing all the areas that testers can help, let me mention that you

are no longer just responsible for testing the software. You should test

the project plan to ensure it has all the internationalization elements

needed for a successful global release. Log defects against the project

plan if you need to and have those responsible for the faulty plan make

the appropriate adjustments. By becoming involved with the project

prior to the first build, you can make internationalizing and localizing you

product easier and cheaper.

Planning

I18N integral part
of development

plan

This part is crucial. No matter how willing and diligent a testing

department is in following these internationalization practices, if the

project and product managers, development team, and other

stakeholders in the project don’t cooperate, your project is destined to

fail; or at least not go very smoothly. Everyone that works on the project

must make the commitment to make internationalization and localization

efforts a standard part of the development cycle. It can no longer be an

afterthought. It needs to be discussed in core team meeting, test

meetings, status reports, etc. and managers need to manage

internationalization the same as they manage other aspects of the

project.

My experience has been that the development managers and

development teams are the hardest to convince. They are used to

programming in a monoglot, or single language, environment. It may be

hard to convince them to make changes to their process to support a

polyglot development paradigm, but it is well worth the battle if they

come around.

Internationalization and Localization Testing 2 6 9

Build Environment

As I mentioned earlier, your build environment must support an

international build. If the build environment doesn’t support this in the

first build of the product you receive, log a defect against it. An

internationalized build environment should be a priority in the product

development lifecycle.

Internationalized Installer

Remember, your installer needs to be internationalized. It needs to be

able to either detect what the user’s language is, and install the correct

language and user interface resources, or it needs to install all language

related files and let the program decide which resources get loaded.

Consider size
of language
resources

Sometimes the second approach is not possible. I have seen language

resources get quite large. A user may not want to install 300 extra

megabytes of language information that they may never use. I

recommend considering the size of your language resources before

dumping them all on a user’s hard drive.

Development

The development team needs to commit to extract their strings from the

core program from a very early stage; preferably from the first line of code

they write. They also need to consider string expansion, codepages,

Unicode, and all the other programming and architectural issues we have

discussed so far.

Development should also look at their native language as being just

another language module that will be plugged into the core product.

They should never treat their native language as part of the core program.

Internationa-
lization

Development should also be committed to fixing all internationalization

defects from the outset. Internationalization is an integral part of coding

if you are writing for a global market. It is as essential as functions,

methods, classes, objects, variables, libraries, etc. Just as a native

language program isn’t much without these things, a global product isn’t

much without attention given to internationalization. Remember, no

procrastinating!

2 70 International Development Issues

Testing

Testing should test the software on localized environments from the

moment they receive their first build. In fact, I would recommend that

the majority of your testing takes place on European and Asian language

environments. English is supported on every language platform available,

so you can rest assured if your program runs in European and Asian

language environments, it will run correctly in English. It is always good

to do at least some testing in English though, just to be sure.

We will go over all the aspects of testing internationalized and localized

programs in the next section.

Localization

Different types
of localization

vendors

Once the programs user interface has been frozen, it is time to send

strings to a localization vendor for translation; unless your company has

their own translators. There are many localization companies in the

world. Some of them are content to receive strings from you, translate

them, and then give them back; others want to partner with you and

become an extension of your company. It is up to your company the

level of help that they need. I like to be in complete control of

internationalization and localization efforts at my company, so we use the

former type of translation vendor. Your company may require a lot more

help; especially if you are just starting to tread out into the global market.

In this case you may want to work with a vendor who provides a deeper

level of service.

No matter which type of vendor you choose, make sure that you use

vendors who use native speakers to do translations. It is preferable too if

the translator lives in their native country. Sometimes people’s language

becomes corrupt after living in a foreign country for a while; I know mine

did. It is important to use native speakers, since that is really the only way

to ensure quality translations.

I have worked at several large and well-known companies who have

produced atrocious Japanese translations and products. I’m sure their

other language translations were odd too, but Japanese is the only foreign

language that I can understand. If you do a search on any book at

Amazon.com that has some negative ratings, nine times out of ten, the

Internationalization and Localization Testing 2 71

low rating was given due to spelling or grammatical errors. I think this

effectively illustrates how important a correct, quality translation is to the

success of an international software product.

Quality assuranceAnother thing I highly recommend is requiring your localization vendor to

come in after the language builds have been completed and do a quality

check of the translation in the context of the software. I also highly

recommend that the person doing the review is not the same person who

did the translation. You should have these localization quality assurance

checks once after the initial translation and localize builds are complete,

and then have them come in again after all the translation errors, if there

are any, have been fixed. This will cost a little bit, but it will ensure quality

and quality could bring you more customers.

6.4 Internationalization Testing

I think we have covered plenty of information to help you understand

some of the issues that plague international software projects. This

should help you better understand the rest of this chapter, where we will

cover internationalization testing tasks in detail. You may also notice that

in the realm of international software testing, in order to reduce costs and

make the process go smoothly, testing is not just limited to running the

compiled program and logging bugs. There are other aspects where

testing should become involved, such as the build layout, installation file

structure, product localizability, etc. We will talk about all of these things

in the following pages.

6.4.1 Start Testing from Day One

If you will recall, I mentioned in the previous section that the traditional

project schedule usually has testing start work after the first build of the

product is created. I also said you should not wait that long to begin

testing. There is more to a product cycle than just the software you are

creating. Traditionally, it has been this myopic focus on the product itself

that has caused some important aspects of international software

development to be neglected.

2 72 Internationalization Testing

At many places I have worked, testers are often treated in much the same

way one might treat a peanut butter and salmon sandwich. Nobody

wants to deal with them. However, testers can be very effective at a

much earlier stage in the development cycle if they are allowed to

become involved.

Involve testers in
planning stage

In order for this to work, testers must become an integral part of the

planning stage of the software. Frequently, testers are left out of this

phase of the product cycle and only become involved once there is a

tangible build for them to work with. However, there is a lot to do when

you are making international software, so testers might as well jump in

and get started. Here are a few things that testing can work on prior to

receiving a build:

Planning

During the planning phase of the product cycle, testing can test the plan

itself. The plan is a very important aspect of developing international

software since all of the teams involved must support internationalization

completely for it to work. If the plan does not account for

internationalization properly, then testing should log a defect against the

plan, and the product should not continue until the plan has been

corrected and ratified.

This is why I think it is so important for testers to understand the

underlying issues of international software development. By

understanding the issues we have talked about, and will talk about, you

can help your company plan their international products correctly in

advance. A well thought out and supported international plan up front

will save you a lot of time and effort during the product cycle.

Build Environments

Testing should be aware of the languages your company plans to support.

Once you know the languages, you can work with the build master to

ensure the build is able to create all languages you need to support. If the

build environment isn’t adequate, then you should log a defect against it

and make sure it gets fixed.

Internationalization and Localization Testing 2 73

Architecture

Testing can be involved at the architecture stage of the product cycle and

log defects against parts of the planned architecture that are not going to

work correctly in an international environment.

For example, if your company is planning to support Unicode in their

products, and in a design document somebody has suggested converting

from Unicode to codepage when transferring data across the network,

and then converting back to Unicode once the data has arrived at its

destination, you could bring up the issues that such a conversion causes

in the Asian languages, and suggest they convert to UTF8 instead. Again,

by planning correctly up front, you will save time later on because

developers won’t have to rewrite this portion of their code and you wont

have to run a regression test on it.

Once all the plans and architecture issues are worked out, and a build has

been created, it’s time to do what you do best. Test.

6.4.2 Testing Your Program’s Installation

Of course, in order to test your program in any environment, you must

install it. There are some things you need to watch out for, however,

when testing the installation in foreign languages.

Check default
install directory

You will want to check the default directory you are installing to. Using

Windows 95 and up as an example, in some countries, like English and

Japanese, the directory structure contains a “Program Files” directory

(which is where most Windows programs install to by default), however,

the same directory is called “Archivos de programa” in Spanish. You want

to make sure the developers are using the Windows alias for the Program

Files directory instead of trying to hard code “Program Files” into their

install scripts.

This next item is becoming less and less of an issue since the Japanese

NEC PC-98 machines are finally being phased out. However, if you have

one to test on, you need to make sure your program will even install on

the PC-98. Unlike every other PC in the world, the PC-98’s first hard

drive is A: instead of C: (there are other architectural differences as well).

If your software is going to support the PC-98, you need to make sure to

2 74 Internationalization Testing

test the installer on it since most programs aren’t accustomed to running

on what looks to them like a floppy disk.

Check uninstaller This should be a part of your standard testing, but to be thorough, make

sure you check the uninstaller for your program too. I have on occasion

run into cases where the uninstall program failed on foreign machines.

6.4.3 Testing for Localizable Strings

Localizable strings are strings that are no longer hard coded and compiled

directly into the programs executable files. As I mentioned earlier, these

strings should be pulled out of the code and placed into either dynamic

libraries or language text files.

There are a few ways you can test for this. Some methods focus on the

source code and other ways focus on the resource files.

First of all, you can obtain the source code for your project and manually

go through looking for strings. The downside to this method is that you

have to be somewhat familiar with programming in order to do it, and it

is sometimes hard to determine if something is a localizable string or not.

There are several tools on the market that will help you do this type of

testing, but they are usually not very effective. I used one of these

programs on some code I was working on a few years ago. I received over

a thousand warnings regarding hard coded strings. Only two of them

were valid.

Create a pseudo
build

An easier method for testers is to create a pseudo build as described in

the previous section. This method focuses only on the resource files, not

the code. The most difficult part about it is that you have to run a full test

suite against your code to make sure you test all the strings, but if you

schedule this task simultaneously with a scheduled top-down test, it

should be very easy. Also, please remember that you must check all error

message dialogs for hard coded strings as well. Testers often forget to

perform this step.

You can create this pseudo build manually or automatically using a small

tool, which your company will probably have to create. To create this

build manually, make a copy of your string table and edit it so that all of

the strings contain at least a few foreign letters inside of them. This can

Internationalization and Localization Testing 2 75

be very time consuming. A better option is to have a developer write a

simple utility to do this for you. A developer shouldn’t have too much

trouble writing a utility that will extract strings from a string table or

language text file and convert them into foreign characters that can still

be read and understood by a tester. The developer should also add

functionality to account for string expansion as outlined in Table 6.1,

“String Expansion Guidelines,” on page 258.

Once you have a string table or file that has been modified with these

pseudo language strings, have the build master create a new build for you

with these strings in it. When this build is available, perform a complete

test pass on the code using your test suites or test cases. Log a defect

against any string that does not show up in this pseudo language. If a

string is not in the pseudo language, then you know it is not contained in

the resource file and is therefore hard coded into the program.

By periodically creating this pseudo language build and testing against it,

you will ensure that all of your program’s strings are separated out into

resource files instead of being hard coded in an executable. This will

make localization a lot simpler since you know where all the strings are,

and you have also accounted for strings expansion by using a pseudo

build and resizing your dialogs and user interface where necessary.

Sometimes developers will need to keep strings inside of the executable.

For example, if I had a string in my program that warned the user of a file

I/O error on his hard drive, I wouldn’t want to have to read that message

from a separate dynamic library file. It wouldn’t work. If a file I/O error

is occurring on my hard drive, how am I going to access a dynamic library

file to extract the error message?

There are a couple of ways to have these critical message strings compiled

into the executable and still maintain the separation of strings and code

that we want (although to a lesser extent). We mentioned this earlier

when we talked about placing strings in a header file and compiling them

into the executable. Developers should only do this when absolutely

necessary. From the testing aspect, however, the program should look

the same either way. You will just need to make sure to run these strings

through a pseudo language tool so they will show up correctly during

your tests.

2 76 Internationalization Testing

6.4.4 Testing With Foreign Characters

We talked a little bit about the way character sets work before, and you

may be asking yourself how you test them. It’s really quite easy.

The best way to test various character sets is to test your program on

localized platforms for each locale you plan to support. On these

platforms, make sure you enter foreign characters into every part of your

program that accepts textual data. Test the data handling capabilities of

your program using these characters. For instance, if you have a program

that requires a username and password, enter foreign text for both and

make sure that functionally everything works.

Entering European or Latin characters is quite easy on Windows. You can

either do it by searching for these characters in Windows’ Character Map

tool, or you can enter them via escape sequences.

The first method, using the Character map, simply involves opening the

tool, which is located either in the Accessories menu or the System Tools

menu inside the Accessories menu, and searching for foreign characters

that you want to insert in your program. Once you find a character you

wish to use, you must click on the Select button to grab it, and then click

on the Copy button to copy it to the clipboard. Now you can paste it into

the program you are testing. This can become tedious since there is a lot

of work involved to get each individual character.

The second way, which I find easier to use once you get used to it, is to

use escape sequences to input these foreign characters. You do this by

holding down the ALT key and typing in certain decimal values using the

number pad. Here are two tables containing sequences you can use to

input upper ASCII characters.

ALT + Number Result ALT + Number Result

ALT + 128 Ç ALT + 148 ö

ALT + 129 ü ALT + 149 ò

ALT + 130 é ALT + 150 û

ALT + 131 â ALT + 151 ù

Table 6.4 DOS Codepage Values

Internationalization and Localization Testing 2 77

ALT + 132 ä ALT + 152 ÿ

ALT + 133 à ALT + 153 Ö

ALT + 134 å ALT + 154 Ü

ALT + 135 ç ALT + 155 ¢

ALT + 136 ê ALT + 156 £

ALT + 137 ë ALT + 157 ¥

ALT + 138 è ALT + 158 _

ALT + 139 ï ALT + 159 ƒ

ALT + 140 î ALT + 160 á

ALT + 141 ì ALT + 161 í

ALT + 142 Ä ALT + 162 ó

ALT + 143 Å ALT + 163 ú

ALT + 144 É ALT + 164 ñ

ALT + 145 æ ALT + 165 Ñ

ALT + 146 Æ ALT + 166 ª

ALT + 147 ô ALT + 167 º

ALT + Number Result ALT + Number Result

ALT + 0128 € ALT + 0210 Ò

ALT + 0191 ¿ ALT + 0211 Ó

ALT + 0192 À ALT + 0212 Ô

ALT + 0193 Á ALT + 0213 Õ

ALT + 0194 Â ALT + 0214 Ö

ALT + 0195 Ã ALT + 0215 ×

ALT + 0196 Ä ALT + 0216 Ø

ALT + 0197 Å ALT + 0217 Ù

ALT + 0198 Æ ALT + 0218 Ú

ALT + 0199 Ç ALT + 0219 Û

ALT + 0200 È ALT + 0220 Ü

Table 6.5 Windows Codepage Values

Table 6.4 DOS Codepage Values (cont.)

2 78 Internationalization Testing

I haven’t provided every possible ALT + Number Combination possible in

these codepages, but this should be enough to get you started. Also,

notice that the only difference between the ALT + Number combinations

for the DOS codepage and the Windows codepage is that the numbers

used to input Windows codepage characters have a zero at the beginning

of the number. This may seem hard to you at first, but I guarantee, after

you enter a few characters, you will remember the ALT + Number

combinations and will find it easier to input characters this way than to

use the Character Map tool.

If you are testing a program on AIX, then you can input accented

characters in the same way you do on Windows. On Solaris, you must

use the Compose key instead of the ALT key. On Linux platforms, you

must set up your system to support Dead Keys. This is fairly easy to do

with distributions such as Red Hat and SuSE. Other Linux distributions

require you manually set up Dead Keys functionality. Please consult the

documentation for your flavor of Linux for information on setting up

Dead Keys.

Before we continue, please note that simply displaying foreign text in

your program’s input fields is not enough. For data entry fields, you will

need to make sure that the data you entered is not only displayed on the

screen correctly, but also that the data has been transported correctly to

the database or other storage mechanism. You can do this by looking at

the database directly, or by viewing portions of your program that will

ALT + 0201 É ALT + 0221 Ý

ALT + 0202 Ê ALT + 0222 Þ

ALT + 0203 Ë ALT + 0223 ß

ALT + 0204 Ì ALT + 0224 à

ALT + 0205 Í ALT + 0225 á

ALT + 0206 Î ALT + 0226 â

ALT + 0207 Ï ALT + 0227 ã

ALT + 0208 Ð ALT + 0228 ä

ALT + 0209 Ñ ALT + 0229 å

Table 6.5 Windows Codepage Values (cont.)

Internationalization and Localization Testing 2 79

pull data from the database and display it on the screen. A good place to

look to verify that your foreign data has successfully made the round trip

to and from your database is in reports, if your program supports them,

since they nearly always pull data from a database and display it to the

user.

NOTE: Sometimes You Don’t Want Certain Characters to Work

The example of the login dialog I mentioned a while ago brings up a very

interesting point. There is at least one case where you absolutely do not

want certain foreign text to be accepted by your program. This is when

you are using masked fields, such as the password section of a login

prompt, with Asian languages. The reason is due to the way Asian

languages input their characters.

IME and FEPAsian languages use what is usually called an IME (Input Method Editor),

or sometimes a FEP (Front End Processor). An IME accepts roman text as

input, and then uses a dictionary to create the characters used in Asian

languages. I will use Japanese to demonstrate how IMEs work, and then

explain why you do not want to support them in the instance of

passwords and other masked fields.

Let’s say I wanted to enter the name Miko as a password in Japanese.

With the IME set to input Japanese, I would type the roman characters

“mi”, which would give me the character み , and then I would type the

roman characters “ko”, which would give me the character こ . These two

Japanese Hiragana characters will be displayed either in the password text

field, or in an IME text area somewhere on the screen. Once I have the

Hiragana displayed, I need hit the space bar to bring up a Kanji

combination. Since there are usually several combinations of Kanji

available, I will need to select the appropriate writing or spelling if you

will, of the name I am trying to enter from a list in the IME. Using the

IME that comes with Windows 2000, if I enter the name Miko, I will

receive the following character combinations to choose from:

巫女 , 御子 , 皇子 , 皇女 , and 神子 .

Finally, I select the correct writing for Miko from the list and press the

enter key to input it into my password field. However, as you can see, the

characters I would be trying to enter into my masked field are displayed

2 80 Internationalization Testing

plainly on my screen in order for me to determine the correct characters

to input into the password field. Since the whole idea behind a masked

field is that people can’t read your password over your shoulder, you

don’t want to allow masked fields to accept Asian characters that must be

entered via an IME or similar mechanism.

If you have masked text fields in your program, you want to make sure

the IME is disabled when the cursor is inside the field. If it is not, then

you should log a defect against your program. Also, remember that

English, European languages and other single byte languages don’t use

IMEs so you will want to test password fields using these characters.

6.4.5 Double-Byte Overlapping Characters

Double-byte languages tend to be more challenging for developers than

single-byte languages are, so there are some tests you will need to

perform on double-byte languages that you don’t need to worry about in

single-byte environments. One of the things that you need to test when

using double-byte languages is overlapping characters. In order to

explain how to test them, I first need to explain what they are.

Previously, I mentioned that the ASCII value for a backslash character is

0x5C. There are several Japanese characters that use this hexadecimal

value in the trailing byte of a two-byte character. This is what I am talking

about when I say overlapping characters. They are values that can be

mapped to more than one character depending on the context in which

they are used (single-byte or double-byte). 0x5C is mapped to the

backslash when it is not part of a double-byte value, but it can be used to

display any number of characters that use the 0x5C value as part of a

double-byte character.

NOTE: The Japanese representation of a backslash is a YEN sign (¥)
instead of the backslash character (\) that you are probably used to.
Therefore, do not be alarmed if you type a backslash and get a YEN
symbol when using a Japanese machine. It is supposed to work that
way.

This can cause problems in programs if the program recognizes the 0x5C

value as a backslash when it really is part of a different character. For

example, let’s assume that the program you are testing is a Windows

Internationalization and Localization Testing 2 81

program with a custom dialog that lets users save files to the hard drive.

We will also assume this program has not been properly internationalized

and does not support overlapping characters correctly.

If a Japanese user were to open this program’s custom file dialog, and

enter a string containing a 0x5C character, the file would fail to save since

the dialog would interpret the last byte of the character as a backslash

and Windows doesn’t support the use of the backslash character in a file

name.

Although you don’t run into problems with these characters as much as

you used to, I still recommend checking for them. The best way to enter

these characters into your program on Windows is to open the Character

Map tool (Figure 6.9), which is located either in the Accessories menu or

the System Tools menu that resides in the Accessories menu.

Figure 6.9 Character Map tool

Open the Advanced View by checking the “Advanced view” checkbox,

and make sure to set your Character set to “Windows: Japanese” as is

2 82 Internationalization Testing

shown in Figure 6.9. This will use the Japanese codepage values instead

of the default Unicode values, which are different.

The character that is shown bigger than the rest is displayed that way

because I clicked it with my mouse. If you look at the status bar area of

the dialog, you will see the text “U+80FD (0x945C): CJK Unified

Ideograph”. The number you want to check is the one in parenthesis.

Notice how the last two digits are 5C?

Finding a 5C
number

You may be wondering how to find a 5C number in this sea of characters.

It is actually quite easy since the characters are in numerical order. All you

have to do is scroll to a place where the Kanji characters begin, hold the

primary button down on your mouse, and move it through the characters

until you hit a character where the second to the last digit of the

hexadecimal number is a 5. Now you just need to move your mouse

horizontally to the right (or down a row if you are already on the right

column) until the last digit is a C.

Once you have the character you want to use in your tests, press the

Select button to place that character in the “Characters to copy” field, and

then press the Copy button to copy that character to the clipboard. Once

you have done all this, simply paste the character into your program and

run your tests to see if the program will properly handle the character.

0x5C is not the only overlapping value; however, it probably causes the

most problems on Windows systems because when they do get

misinterpreted as a backslash they cause not only display problems, but

functionality problems as well. The “#” character (0x23) character can

cause problems on platforms such as Linux, *BSD, and UNIX because the

“#” character is used to indicate comments.

If you are testing Japanese, one of the best places on the internet to get

Japanese strings for use in your testing is Jim Breen’s web site at Monash

University. The URL is: http://www.csse.monash.edu.au/~jwb/

wwwjdic.html. If you click on the “Search for Words in the Dictionary”

link, you can enter English sentences into the text field and the web site

will provide you with Japanese translations of the string, which you can

copy into the program you are testing. For the other languages, I

recommend using Babelfish. It isn’t as good as Jim Breen’s site, but works

Internationalization and Localization Testing 2 83

well enough. I am not providing a link for Babelfish, since there are many

different locations that offer Babelfish services. Just do a search for

Babelfish using your favorite internet search engine and select one of the

myriad Babelfish sites available.

For those of you who don’t speak an Asian language, or are not familiar

with the IME, you will find that cut, copy and paste can be three of your

best friends.

6.4.6 Keyboards

If you are going to support international platforms with your software,

you should also test using international keyboards. Some international

keyboards have functionality that is not found on English keyboards. The

Japanese keyboard has several buttons that provide functionality

exclusive to their language; such as allowing the user to switch input

modes between the four different writing systems commonly used in

Japan.

Since many foreign keyboards have functionality that may not be

available on your native language keyboard, I recommend getting at least

one keyboard from each locale you plan to support and testing your

product using them.

I have seen a program in the past where foreign data was able to be

entered correctly using an English keyboard on a Portuguese system, so

the product was shipped. However, when the program was installed by

people in Brazil, who were using a Portuguese keyboard, they were not

able to enter the C Cedilla character (Ç).

I have only worked for one company that was willing to provide the

budget necessary to buy foreign keyboards. Interestingly enough, it was

the same company that shipped the product mentioned above, and the

budget came after this defect was discovered. I suppose they found

buying a few keyboards cheaper than developing and distributing a patch

to their Portuguese customers.

Another reason to get a few foreign keyboards is convenience. Foreign

language keyboards often times have different layouts than those used in

English speaking areas. One point of frustration I have seen with many

2 84 Internationalization Testing

testers is when they try to type a password on a German language OS

using an English language keyboard, where the password contains either

a ‘Y’ or a ‘Z’. On German keyboards, the ‘Y’ and ‘Z’ are in reversed

positions compared to an English keyboard. Also, to add to the problem,

password fields are masked so you cannot see what you are typing.

Therefore, instead of typing the password “B-e-l-L-y-2-4”, which is what

they are typing according to the layout on the English keyboard, they are

actually entering “B-e-l-L-z-2-4” on the German machine, which of

course won’t work.

Foreign language keyboards have the correct layout printed on their keys,

so you can avoid this kind of frustration. You can also avoid it by

changing the keyboard layout used by the German OS from German to

English; however, this makes entering some German characters a little

more difficult (See the section titled “Testing With Foreign Characters” on

page 276 for information on entering accented characters using an

English keyboard).

6.4.7 Printing and Paper Sizes

Different countries use different paper sizes. The most common used

paper size in the United States is “Letter”, which refers to 8½” X 11”

sheets of paper. In many other countries the most common size of paper

is the ISO size A4, which has slightly different dimensions. If your

program contains the ability to print things like reports, you should make

sure you test the reporting functionality by printing to commonly used

paper sizes in the locales you plan to support.

One problem with printing that sometimes occurs is programmers will

create reports with beautiful borders and layouts, but they will only take

into consideration the paper size commonly used in their country. When

you print your program’s reports out on other paper sizes, they suddenly

stop looking pretty and professional.

6.4.8 Sorting

Foreign languages are collated using different sorting rules than those

employed in English. In German, for example, the letter ö is sorted so

that the letters ö and o would appear next to each other. In Sweden,

Internationalization and Localization Testing 2 85

however, ö is sorted at the very end of the alphabet; a couple of letters

after the letter z.

Working with disparate collation rules in different languages can be

interesting to say the least. Sometimes, however, you will encounter

multiple collation rules within the same language. Spanish and German

are examples of these.

Spanish has four more letters than English, for a total of 30 (although they

only use 29 of them in Spanish. The W is only used for foreign words).

These extra letters are ‘CH’, ‘LL’, ‘RR’, and Ñ. ‘CH’, for example, looks

like the English letters ‘C’ and ‘H’, but in Spanish ‘CH’ is considered a

single letter; not two individual letters.

It is with three of these four extra letters that the two different sorting

rules are concerned. The first rule, which is commonly referred to as

Traditional Sort, sorts the letters ‘CH’, ‘LL’, ‘RR’, and ‘Ñ’ as though they

were individual letters. This is probably the sorting order that you were

taught in Spanish class when you attended high school. The newer

collation standard, which is commonly referred to as International Sort or

Modern Sort, treats the letters ‘CH’, ‘LL’, and ‘RR’ as two separate letters

instead of a single letter; the same way we do in English.

To give an example of the differences between the traditional and

international sorting rules used in Spanish, let’s use the ‘CH’ character

and the names Cecil, Charles, and Cynthia. If we were to use the

traditional sorting rules, the names would appear in this order:

Cecil

Cynthia

Charles

Using the newer sorting rules, initiated by an organization called “la

Asociación de Academias de la Lengua Española”, the names would

appear in this order:

Cecil

Charles

Cynthia

2 86 Internationalization Testing

Most of the time, companies will only offer the International, or Modern

Sort collation. However, some choose to extend Traditional Sort

functionality to their customers living in Spain; since Spain still uses the

Traditional Sort standard of collation. If your company decides to support

the Traditional Sort standard, you will need to test the sorting

functionality as described above.

Here are the sort orders for both Traditional and International, or

Modern, collation methods.

German, like Spanish, also has multiple collation rules. There are three of

them, but you will usually only see the first one used; unless you are

sorting peoples names, as in a phonebook program. I will touch on each

of these rules briefly.

In the first rule, called DIN-1, the umlauted characters are sorted the same

as their unaccented equivalents. Therefore, Ä = A, Ö = O, and so on.

DIN-1 is the sort order used in dictionaries and other word lists. It is the

sort order you will work with nearly always.

A E J N R V

B F K Ñ RR W

C G L O S X

CH H LL P T Y

D I M Q U Z

Table 6.6 Spanish Sort Order (Traditional)

A F K O T Y

B G L P U Z

C H M Q V

D I N R W

E J Ñ S X

Table 6.7 Spanish Sort Order (International or Modern – ‘CH’, ‘LL’, and ‘RR’ are
ignored)

Internationalization and Localization Testing 2 87

In the second rule, called DIN-2, the umlauted characters are sorted the

same as their unaccented equivalents plus the letter E. Therefore, Ä = AE,

Ö = OE, and so on. DIN-2 is the sort order used for lists of names. It is

the sort order used in phonebooks in Germany.

The last sort order, called Austrian, was used in Austrian phonebooks, but

I believe they have switched over to DIN-2. You will never use this sort

order since most software libraries and databases don’t support it.

Here is the sort order that you should use when testing German

applications. Remember, usually the umlauted characters are sorted with

the same weight as their unaccented counterparts. If you are planning to

support the DIN-2 collation, just replace the umlauted characters in the

table with their unaccented counterparts plus an E as described above.

Spanish and German look complicated perhaps, but they really aren’t that

hard to test. French makes it nice by sorting the same way we do in

English. The most difficult languages to work with are the Asian ones due

to the sheer number of characters involved. In order to give you an idea

of how Asian language sorting works, I will use Japanese as an example.

Japan uses the following four “alphabets”:

A E J O S V

Ä F K Ö ß W

B G L P T X

C H M Q U Y

D I N R Ü Z

Table 6.8 German Sort Order

Kanji These are Chinese characters and constitute the largest of the four
writing systems.

Example: 漢字

Hiragana This is a phonetic alphabet that is used for native words and
grammar.

Example: ひらがな

Table 6.9 Japanese Writing Systems

2 88 Internationalization Testing

In the case of Japanese, the sort order is done by phonetics regardless of

which writing system is being used. Here is a table showing the

Romanization of the Japanese phonetics, and their sort order.

Therefore, if I had the words:

黒澤明 (Kurosawa Akira)

くちぐるまにのる (Kuchiguruma ni noru)

クレヨンしんちゃん (Kureyon Shinchan)

Clint Eastwood (which is pronounced Kurinto Iisutouddo in Japan)

Katakana This is a phonetic alphabet similar to Hiragana, only this alphabet is
used mostly for foreign words.

Example: カタカナ

Romaji These are roman characters and are often used when referring to
foreign proper nouns; with the exception of people’s names, which
are usually translated into Katakana.

When testing software in Japanese, it is acceptable to leave your
company name, trademarked names, and product names in English.
I have seen the name Microsoft and Windows translated into
Katakana, but usually this is not done.

A KA SA TA NA HA

I KI SHI CHI NI HI

U KU SU TSU NU FU

E KE SE TE NE HE

O KO SO TO NO HO

MA YA RA WA N

MI RI

MU YU RU

ME RE

MO YO RO WO

Table 6.10 Japanese Phonetic Sort Order

Table 6.9 Japanese Writing Systems (cont.)

Internationalization and Localization Testing 2 89

They would be sorted in this order based on the phonetic table listed

above:

くちぐるまにのる (Kuchiguruma ni noru)

Clint Eastwood (which is pronounced Kurinto Iisutouddo in Japan)

クレヨンしんちゃん (Kureyon Shinchan)

黒澤明 (Kurosawa Akira)

Japan has another sorting method that is used only in Kanji dictionaries.

This is based on the concept of radicals (common segments of Kanji

characters), and the number of lines it takes to draw both the radical and

the entire character. Since this is not a book on Japanese, and since you

probably are not writing a Japanese Kanji dictionary program, I will refrain

from delving into these concepts since they would require me teaching

you Kanji. You will most likely never have to test this sorting method.

Most people in America cannot read Asian text, so usually companies will

not test sort orders in Asian languages. Without years of language study,

it would be difficult to do this particular test, so it’s best to find a work

around. For example, on my projects I usually ask the Asian language

translators we hire to quickly check the sorting capabilities for us. While

this is not as thorough a test as I would like, it is better than nothing.

Asian languages are difficult to check even if you can speak the language

because there are so many characters. It is virtually impossible to check

the sort order of tens of thousands of characters during a product test

cycle, so just do a reasonable sample and move on.

In this section, I have provided you with detailed sorting information for

three of the most popular target languages, and also mentioned French.

This should give you an idea of what you need to look for when testing

sorting on international platforms.

Because different countries and languages sort their alphabets differently,

you will need to ensure that databases and other data storage

mechanisms in your program present sorted data to your international

customers according to the rules of collocation used in each locale.

29 0 Internationalization Testing

6.4.9 Filtering and Searching functionality

Programs that are used to collect and manipulate data usually provide the

user with a mechanism for searching and filtering that data. As a global

software tester, you need to make sure that the filtering and searching

capabilities of your program work correctly with foreign text.

The problem that I see most often with filtering and sorting capabilities in

a program is they will ignore the accent marks used in foreign text.

Therefore, if a user performs a search on the database for the word

“Wörd”, the search feature will return not only the word “Wörd,” but also

the words “Word”, “Wórd”, and “Wõrd”, which is probably not what the

user had in mind.

Filtering works in much the same way as a search does, only it usually is

a more permanent aspect of data manipulation. Searches usually have to

be performed manually each time. In counterpoint to searches, filters are

usually saved within the program so that by clicking a button or

performing some other non-trivial task, you can apply a saved filter on

your data, which will disregard any data that doesn’t mean the criteria

defined by the filter.

Most programs that support filters have a few predefined ones built into

the program itself. While it is, of course, important to test custom filters

that you build and save manually, it is very important to check the filters

that may be built into your program. Quite often, developers forget to

include support for international characters in these predefined filters, so

they must be checked.

6.4.10 Shortcut Keys and Mnemonics

Shortcut keys are function keys or key combinations that perform certain

tasks within a program without having to use the mouse to click on menu

items. An example of a shortcut key is the F7 key in Microsoft Word,

which brings up the spelling and grammar checker. Another example in

Word is SHIFT + F7, which brings up the Thesaurus.

Shortcut keys are usually noted to the right of the menu item to which

they are bound. For example, in Microsoft Word if you open the file

menu, you will see shortcut keys listed for the New, Open and Save menu

Internationalization and Localization Testing 2 9 1

items (Figure 6.10). These shortcuts are listed as Ctrl + N, Ctrl + O, and

Ctrl + S respectively.

Figure 6.10 Menu item shortcuts

Notice how the key that is combined with the CTRL key is the first letter

of the menu item to which it is bound? When testing international

software, you will want to make sure that these letters are updated so

they match the localized word. It wouldn’t make much sense in English

if the shortcut key for the “New” menu item was CTRL+J, so you will want

to make sure that foreign users don’t see a shortcut that doesn’t make

sense either.

Mnemonics are kind of like shortcuts, but they differ a little bit.

Mnemonics are the underlined letter of a menu item (Figure 6.10),

button, or other window control. For example, in the Microsoft Word

File menu example listed above, the ‘N’ in “New” is the mnemonic, as is

the ‘C’ in “Close”. To access a mnemonic, you press the ALT key together

with the underlined letter in the menu command, button, etc. you wish

to activate.

Mnemonics differ slightly from shortcuts not only in appearance, as we

just discussed, but also in functionality. Shortcuts can be activated from

anywhere in the program simply by pressing the right key combination.

The key combinations are usually listed in the menu system as shown

above, but this is only to help you if you forgot what the shortcut is. The

menu does not have to be open in order to execute the shortcut. Menu

mnemonics, on the other hand, cannot be activated unless the menu

containing them is open. Mnemonics can also appear on buttons, list

boxes, combo boxes, and almost any other window control you can

imagine. A simple way to think about them is Shortcuts are tied to a

specific function in the program and Mnemonics are tied to the user

interface.

2 9 2 Internationalization Testing

If you think about it, both mnemonics and shortcuts are strings, and as

such are contained in your resource file (or at least they should be).

Because of their inclusion into localizable resource files, translators can

change the shortcuts and mnemonics in your program to match foreign

strings. This can sometimes cause an issue in your program that you will

need to watch for.

On occasion, translators have been known to assign the same mnemonic

to two different menu items in the same menu. This causes a problem.

When you execute the mnemonic, which one of the menu items will be

called? If you find this has occurred, log a defect against it so the

localization vendor can fix it.

There is one more distinction that needs to be made regarding

mnemonics and shortcuts. Localization vendors can change a mnemonic

by simply changing which character in the menu string is underlined. The

same is not true of shortcuts. The reason is that mnemonics are tied to a

specific menu item and the operating system will recognize them

regardless of which letter you choose to make your mnemonic. Shortcut

key strings, on the other hand, can be changed by the localization vendor,

but then a developer also needs to make a change to the ID associated

with that shortcut key. Because of this, it is possible to have a shortcut

key and its ID out of sync. This is a problem that cannot occur with

mnemonics.

Since localization can cause problems with mnemonics and shortcut keys,

and usually does, it is always a good idea to meticulously test your

programs menu system and interface for these mnemonic and shortcut

related issues.

6.4.11 Date and Time

Date and time formats were discussed previously in the section where we

talked about internationalization development issues. However, let’s

discuss them again from a testing centric aspect.

Internationalization and Localization Testing 2 9 3

As we discussed earlier, different countries use different date and time

formats. Here is a table showing the different formats for several

countries.

You need to test all time and date fields in your international programs

and make sure when a German user enters the date 13.05.03, that your

program doesn’t interpret that to mean the fifth day of the thirteenth

month of the year 2003, but rather May 13, 2003.

Another thing that you need to test is the format of calendars if your

program contains them. In the United States, they format their calendars

with Sunday being the first day of the week. Sunday therefore appears in

the leftmost column in the calendar. Other countries consider Monday

to be the first day of the week. In these countries, Monday should be the

leftmost column and Sunday should be in the rightmost position.

Time format is usually not a big issue. Some countries may prefer the

12 hour clock to the 24 hour clock, and visa versa, but people

everywhere can work with either clock (although it may take some

counting on their fingers) and the computer really isn’t going to care

which format is used. The time format is more a cultural convenience

than a computer stability issue. Time formatting won’t crash your

program the way that incorrect date formatting will.

Having said that, notice how the time format for Sweden uses a period

instead of a colon to distinguish hours from minutes? It is possible that

this delimiting token between hours and minutes could cause a problem

within your program. If you are planning to sell your product in Sweden,

you will want to make sure your program accepts alternate delimiters

Country Short Date Before Noon After Noon

United States Month/Day/Year 11:45 AM 1:30 PM

France Day/Month/Year 11:45 13:30

Germany Day.Month.Year 11:45 Uhr 13:30 Uhr

Japan Year/Month/Day 11:45 13:30

Sweden Year/Month/Day 11.45 13.30

Table 6.11 Different Date and Time Formats

29 4 Internationalization Testing

rather than only recognizing the colon. Most modern operating systems

handle these delimiters for you, but it is always a good thing to check.

6.4.12 Currency

As you are probably aware, most countries and currencies have their own

monetary symbol. Here is a table showing the currency symbols used in

several countries.

Most of these monetary symbols are fairly easy to deal with. The Euro (€)

can be the exception. The Euro symbol is a fairly recent addition to the

financial monikers of the world. As such, it is a new addition to the

myriad codepages and encodings used throughout the world. Some

platforms and programs support the Euro fine, but others fail miserably.

It is always a good idea to test you program for Euro support. You should

not limit these tests to places in your program that accept monetary input

either. It is a good idea to use the Euro character as part of your

passwords, and anywhere else you can input data. Since somebody in

Europe is likely to use the Euro symbol in passwords, descriptions, etc.

you need to make sure your program supports it everywhere.

One more thing regarding the Euro; it is entirely possible for your

program to support it, but still not display it properly. You need to test

both aspects when testing for Euro support. I remember working on a

console based CIFS product a couple of years ago which allowed us to

share files between Netware and Windows platforms easily.

Country Currency

United States $

Germany DM

France FR

Euro €

Japan ¥

England £

Table 6.12 Currency Symbols

Internationalization and Localization Testing 2 9 5

6.4.13 Numbers

There is another aspect to testing currency beyond which symbol is used

to specify a country’s monetary system. This aspect of testing also applies

to numbers in general. This aspect is the symbols used to delineate

thousands and decimal values. In the United States, the number one

million would be written like this: 1,000,000.00. However, in Germany

and France, the same number would be written like this: 1.000.000,00.

Notice how the meaning of the periods and commas is reversed?

During your testing, you need to make sure that any numerical or

currency value is written correctly according to which language you are

validating. You also need to make sure your programs work correctly

with numbers formatted in different ways.

6.4.14 Addresses, Postal Codes and Phone Numbers

Addresses and postal codes are another fun aspect of creating

international software. In the United States, the address format is usually:

Name

Street Number

Extra line for apartment numbers, Suites, Buildings, etc.

City, State Zip Code (Zip Codes are either five or nine digits long)

Other countries have different ways of formatting their addresses. Japan,

for example, formats their addresses like this:

Postal Code (postal codes in Japan used to be three digits, but now
they are seven)

Prefecture

Town

Street Number

Name

As you are testing software, you need to make sure foreign addresses can

be entered into your software and retrieved from the database if your

program includes this functionality.

29 6 Internationalization Testing

There are several ways a program can support foreign address data. For

example, just use a single text field for address information and allow the

user to enter address strings in any format they choose. This approach

will not work very well, however, if you need to retrieve individual

portions of the addresses to run database queries; for example, listing all

of your customers who live in Florida.

One good way to overcome the limitations imposed by a single text area

input field is to have a different address dialog for each language. You

would then pull that dialog from the appropriate dynamic resource library

along with the foreign strings. There are other ways to solve this problem

as well.

Phone numbers are another thing that can different from locale to locale.

In the United States, we use a three digit area code, followed by a seven

digit phone number (i.e. 1 (555) 555-5555). In parts of India, they use

the format (55) 55 555 55555. Japan uses either (55) 55-5555-5555 or

(55) 55-55-5555 depending on the size of the town you live in (although

I have heard they may standardize on the first format).

Often times, programmers place masks on their input fields to limit a

phone number’s length, and to automatically provide the hyphen and

parenthesis characters so the user doesn’t need to type them. This is

great functionality, but doesn’t work well internationally. Therefore, you

need to test you program with various phone number formats to ensure

international functionality and quality.

6.4.15 Spelling, Grammar and Other Language
Considerations

Usually you don’t have to worry about spelling for two reasons. First of

all, the likelihood that you speak a foreign language well enough to be

well versed in spelling and grammar constructs is quite low. Secondly,

you usually hire or contract with linguists who will test the spelling and

grammar of the translations used in your program.

What if you are shipping your product to English speaking countries who

spell words differently than you do in your country? For example, people

living in England tend to beautify and flower words like Color and

Internationalization and Localization Testing 2 9 7

Behavior with extraneous ‘u’s; such as colour and behaviour. On the

other hand, people living in the United States tend to like their words

clinical and to the point, so we leave out the ‘u’s in color and behavior. If

I were writing this book in England, I would spell the word

“internationalization” “internationalisation” instead; with an ‘s’ instead of

a ‘z’.

The truth of the matter is that nobody localizes software into variations of

their own language unless the variations are quite extreme; such as the

difference between Chinese Simplified and Chinese Traditional. While

there are locale identifiers available so you could localize your product

into US English, Australian English, Canadian English, and UK English, I

have never seen a program that actually did that. The costs are too

significant and the benefits too minute.

Cultural
differences and
idiomatic phrase

Just because companies don’t localize their products into various dialects

doesn’t mean that there isn’t something for you to test. Let me use

British Comedies as an example. Have you ever watched an episode of

Red Dwarf, The Black Adder, A Bit of Fry and Laurie, etc. and noticed that

the laugh track is laughing but you are not? This is either because you

don’t find British humor funny, or because you don’t understand the

British culture enough to understand the joke.

This can happen in software as well. If your program makes heavy use of

idioms or colloquial phrases that are specific to your culture, people in

other countries who speak the same language you do still may not

understand. As you test your software, look for colloquialisms and

idioms, especially in help files, that might be difficult for others to

understand.

The problem of idiomatic phrases is exacerbated when you try to

translate your software into other languages. Phrases like “shoot the

breeze”, “for all of me” and “putting the cart before the horse” will not

translate very well into other languages. At least with other English

speaking countries, you could explain the colloquialism or idiom to them

and they would most likely understand. These are difficult to translate

into other languages though. For example, there is an old Japanese idiom

“where have you been selling oil”. It basically means “where have you

2 98 Internationalization Testing

been wasting time”, but I have no idea how it was derived. It is best to

avoid slang, idioms, puns, and other culturally specific terminology.

Use of
abbreviations
and acronyms

Another thing you need to watch out for is abbreviations and acronyms.

Since you are testing software, I recommend you particularly watch out

for acronyms. I cannot imagine another group on Earth that has made

such heavy use of acronyms as the computer industry. It’s almost to the

point that technical conversations are nothing but acronyms. If your

software does use abbreviations and acronyms, make sure that they are

explained well so others will know what you are talking about.

Acronyms are derived from the first letter of each word in multi-word

phrases. “Domain Name Server”, for instance, is shortened using the

acronym DNS. When testing international software, remember that

acronyms are derived from your language, not somebody else’s. This may

make it difficult for foreign users to decipher the meaning of your

acronyms. As you test, try to look at abbreviations and acronyms through

the eyes of a non-English speaker, and then log defects against the

product if you believe it will be confusing.

6.4.16 Brand Names and Terminology

The computer industry, being fairly new in comparison to other

industries, probably hasn’t been around long enough to develop a wide

vocabulary of its own. Therefore, most companies hijack existing words,

or piece together odd phrases, to describe their program’s innovation or

technology.

In English, these words and phrases make sense to some degree, but

when translated literally they can be confusing and sometimes

nonsensical. For this reason, it is usually best to leave these specialty

words in English and then explain what they mean in your

documentation.

The made-up words and phrases that we trademark and pepper our

products with can easily be compared to humor in foreign languages. Let

me use a simple Japanese joke as an example (by simple I mean it is a joke

of the same caliber as Why did the man throw his clock out the window? –

He wanted to see time fly.) Here’s the joke: There is a tall building. A man

Internationalization and Localization Testing 2 9 9

walks out of the front door. What is his name? The puzzling punch line is

Devilman.

Now you are probably not laughing, mainly because it is a dumb joke, but

unlike the clock joke, you likely cannot fathom how the Japanese joke

could be considered a joke at any level; dumb or otherwise. The same is

often true of proprietary technical terms and phrases. People from other

countries will understand each of the words in your technical term, but

they may not be in any order or combination that makes sense.

As you test, be mindful of this. It is a good idea to write a defect against

proprietary words that have been translated. This is also something that

should be discussed during the planning stages of development.

Ideally, your company should create a document outlining these

technical and proprietary terms, and you should make this glossary

available to your localization vendor before they start translating your

software. The vendor will be very pleased with you if you provide them

with this information.

6.4.17 Asian Text in Programs

We have already discussed Asian text a little bit when we talked about

testing with foreign characters. However, there are a few more points

regarding these topics that I feel are important to discuss.

Remember in the beginning portion of this chapter where we talked

about variables and how you can usually only store one kind of data in a

variable? This restriction to a certain data type can cause problems when

working with Asian characters. To explain the issue, let me illustrate using

the C programming language.

Unlike some languages, C does not have a “string” data type. Instead

string variables in C are stored inside of character arrays. So, if I want to

store the ubiquitous programming phrase “Hello World” in a C variable, I

cannot declare a single string variable and put “Hello World” into it as

illustrated below.

String Variable

Hello World

30 0 Internationalization Testing

Instead, I must declare an array of characters and store each individual

character in the phrase “Hello World” in a separate component of the

array as shown here (note the ‘\0’ character in the last column. This is the

null terminator, which indicates the end of the string in C).

The problem lies not in the fact that C doesn’t have a string variable type,

but in that C’s character data type (char), and therefore array elements

created using the char variable type, are only a single byte in size. This

means that each element, or cell, of this array can only contain one byte.

As we have discussed several times in this chapter, Asian characters

require two bytes per character instead of just one. If we were to try and

force an Asian string in our “Hello World” array, it would destroy our

string. The array treats a double-byte string in the same way our faux

bank teller at the beginning of the chapter would treat a tuna fish

sandwich being proffered for deposit.

Many developers are aware of this issue, and many programming tools

provide good mechanisms to avoid the problems introduced by double-

byte characters. However, if you are testing your product on an Asian

language and the text you are working with is not displayed correctly, but

rather looks like garbage characters, the problem may be that your

program is using char arrays to store strings.

Always test Asian strings wherever you can in your program and make

sure they are displayed correctly. Nothing makes a customer more upset

than seeing their data turn into squares, blocks and other meaningless

characters.

6.4.18 Databases

In the previous section, we talked about variables and data types in

programming languages. Databases have a similar concept in regards to

data fields as well. You can set a field so that it will only accept one kind

of data.

Character Array

H e l l o W o r l d \0

Internationalization and Localization Testing 3 01

Occasionally, programmers will either not pass data to the database

correctly, or the database field type itself will not correctly handle foreign

data. If you have access to the database, meaning it is not stored on a

remote server that is inaccessible to you, you can open the database and

test the validity of your foreign data directly. Of course, this approach

requires that you are familiar with SQL or some other querying

mechanism.

You can also perform tests on your data from within your program using

the data retrieval mechanisms built within. Whichever method you

choose to use, make sure that foreign date formats, strings, addresses,

etc. are all supported by your database and that they are being

transported to and from the program correctly.

I have worked on projects where the data was being handled correctly by

the program, but the database was not configured correctly to handle

certain foreign data. Once the data entered the database, it became

corrupt.

6.4.19 Seasons

I have come across many excellent testers who are surprised when I bring

up seasons as an international software issue. The thought of seasons

being related to software never occurred to them. It never really

occurred to me until I made my first trip to India.

I traveled to Bangalore, India from Japan in the heat of a wet Tokyo

summer a few years ago. Nobody told me what to expect, so I packed my

luggage in preparation for a hot two weeks in India. To my complete

befuddlement, it was actually cool in Bangalore. When I talked to the taxi

driver, who hardly left my side during my stay, he told me it was actually

wintertime in India.

When I returned, I spoke to a friend from Brazil to explain this new found

nugget of trivia I had found. My friend just looked at me as if I were as

dumb as a bag of particularly un-insightful rocks. It was at that moment

that I realized seasons occurred at different times in different parts of the

world.

30 2 Internationalization Testing

Once I made this brilliant discovery, I realized that I had worked on

software in the past that represented different months in the calendar

using seasonal icons such as kids playing on a sunny day to represent July,

or Snowmen and scarves to represent December. From that moment on,

I’ve been conscious of the icons and graphics which are specific to the

seasons in my part of the world.

Most software does not include graphics and icons that are chosen based

on the weather, but if the software you are testing does, you will want to

work out these issues before you ship your product. It doesn’t snow in

December in many parts of the world.

6.4.20Measurements

When I first went to live in Japan, I had a really hard time figuring out my

height in centimeters. This was slightly discouraging since I was a good

head taller than everybody else, and was constantly being asked how tall

I was. I would try to explain my height using feet and inches, as I was

accustomed to doing, but was usually met with a polite change of

subject.

When you ship software, you don’t want customers to change the subject

since that means a change in product. During your testing, make sure

that measurements are displayed in the correct standards used in foreign

markets. For example, if you are displaying a temperature, make sure it is

either displayed in both Celsius and Fahrenheit, or displayed correctly

based on the machine locale.

6.4.21Signs, Symbols and Colors

Sometimes companies are tempted to use signs and symbols in their

software as icons for toolbar buttons, images for wizards, and graphics to

depict certain functionality. One educational software product I worked

on a few years ago used a speed limit sign to indicate that you were really

starting to learn quickly and a stop sign at the end of each lesson.

The first thing I did was removed the traffic sign based graphics since they

don’t mean anything in Japan. Japan’s stop sign is an inversed triangle

Internationalization and Localization Testing 3 03

and their speed limit sign is a circle. When you are testing software, look

for graphics in your program that are specific to your country or culture.

To give another example, there was a sever product I worked on several

years ago that used a red circle to indicate that an error had occurred and

a green ‘X’ mark to indicate that everything had worked correctly. This

makes sense in the United States since the colors are based on traffic

lights. Red meaning that something stopped or failed to work, and green

indicating that everything was a go.

This color scheme based visual representation of success and failure was a

big problem for Japan since red and green are not associated with success

or failure. The circle and ‘X’ shape, however, are. In Japan, an ‘X’ shape

signifies a failure. In fact, you will often see Japanese people make an ‘X’

mark by crossing their arms when an answer is incorrect or a suggestion

distasteful to them. They call this mark a batsu. The circle mark, on the

other hand, is called a maru and is used to signify success, or a correct

answer or suggestion. You will often see these two shapes used on

Japanese game shows, for instance, to signify a correct or incorrect

answer.

Because of the cultural use of the ‘X’ mark and circle in Japan, the server

product I worked on was, at least to the Japanese, reporting all the

successes as failures and all the failures as successes.

Another funny graphic I saw before was included in a recipe program. It

was of a bowl of rice with two chop sticks sticking up out of it. This

would probably be a nice graphic for an oriental food section of a recipe

program; however, this is a very rude thing to do in Japan since it is part

of their funeral ceremony. No one would ever leave their chopsticks

sticking up out of their food in Japan.

It is a good idea to understand signs, symbols and colors and the various

meaning they have in different cultures. However, it would require a lot

of study on any individual’s part to know and understand all the

implications of signs, symbols and colors in a wide range of cultures. For

this reason, I would recommend discussing these concerns with your

localization vendor and requesting that they look over your graphics and

suggest changes where the graphics carry no meaning in a foreign market.

30 4 Conclusion

If they find any problems, then you can log a defect against the product

and have the graphic changed.

Above all else, you do not want to confuse or insult foreign customers

through the use of inappropriate graphics. The entire purpose of graphics

in a program is to convey meaning and help the customer easily work

with your product. If you confuse or insult the customer, your product

will not be very successful internationally.

6.5 Conclusion

I hope this chapter has given you an idea of the many issues you need to test

for as you work with international software. We have discussed many topics

during this chapter. Here is a summary of the things we have discussed:

� We defined internationalization and localization and discussed some

of the benefits of producing international software.

� We discussed the importance of planning your software products to

include a focus on international issues.

� We discussed some of the problems that occur when a good

international plan is not in effect.

� We discussed the problems of using the traditional software approach,

which is to create a native language version of your software and then

try and tweak it at a later time to work internationally. We also

discussed the negative effects such a plan would have on

development, testing, and the overall cost of the project.

� We discussed what an internationalization-centric plan should look like.

� We talked about testing getting involved at the beginning of the

project by testing the project plan, the build environment, and so on.

� We discussed the issues development must deal with when working

with foreign text, especially double-byte Asian text.

� We illustrated what hard coded strings were and why they have a

negative impact on international software.

� We learned why multiple code bases are costly and prone to errors.

We also learned that maintaining multiple code bases usually leads to

features being left out of international versions of the software.

Internationalization and Localization Testing 3 05

� We discussed the benefits to our company’s budget and time to

market if we follow a good international plan and focus on

internationalization from the very beginning of each project.

� We discussed pseudo language builds and how to use them. We also

mentioned that by using a pseudo language build and always testing

on foreign platforms, we would be able to eliminate

internationalization and localization defects at an early stage.

� We discussed string expansion and learned some methods to eliminate

string expansion issues in our dialogs using a pseudo language build.

We also learned some strategies development can use to provide room

for foreign strings on their dialogs.

� We discussed separating our strings into separate resources, and

making all languages, including our native language, modules that plug

into our core product.

� We talked about builds and installer programs and how they should

handle multiple languages.

� We discussed character sets, codepages and encodings and some of

the issues surrounding them.

� We learned how double-byte character sets work and discussed many

of the problems that they cause in software.

� We talked about testing with foreign characters and how to input them

into your program.

� Finally, we discussed the international issues you need to watch for

when testing products. This included printing, dates, times, seasons,

currency, numbers, spelling and grammar, measurements, vernacular,

sorting, searching, filtering, etc.

As you learn to use the concepts outlined in this chapter, testing for

international issues will become second nature to you. I think you will

also find that by planning projects better and testing in a slightly different

paradigm than you are used to, the international product will not be the

only products that benefit from your efforts. I think you will also find that

the quality of your native language products will increase as well.

Bibliography 3 07

Bibliography

This book refers to the following documents and links.

[Acomtech] http://www.acomtech.com

[Adobe] http://www.adobe.com

[AGCS02] DeLano, D. / Rising, L.: System Test Pattern Language

AG Communication Systems

http://www.agcs.com/supportv2/techpapers/patterns/
papers/systestp.htm

[AgileManifesto] http://www.agilemanifesto.org

[Ambler99] Ambler,S.: Object Testing Patterns

Software Development, 7/1999

[Android] http://www.wildopensource.com/larry-projects/
android.html

[b-Agile] http://www.b-agile.de/de

[Balzert00] Balzert, H.: Objektorientierung in 7 Tagen

Spektrum Akademischer Verlag, 2000

[Bach01] Bach, J.: What is exploratory testing?

http://www.satisfice.com/articles/what_is_et.htm

[Bach99] Bach, J.: test Automation Snake Oil

http://www.jamesbach.com/articles/test_automation_
snake_oil.pdf

[Beck99] Beck, K.: Extreme Programming Explained

Addison-Wesley, 1999

[BeckJos99] Beck, K. and Josuttis, N.: eXtreme Programming

Objektspektrum No. 4/1999

[Binder00] Binder, Robert: Testing object-oriented systems: models,
patterns and tools

Addison-Wesley, 2000

[Black99] Black, R.: Managing the Testing Process

Microsoft Press 1999

[BlahaPremerlani98] Blaha, M./Premerlani, W.: Object-oriented Modeling and
Design for Database Applications

Prentice Hall, 1998

3 08 Bibliography

[Booch94] Booch, G.: Objektorientierte Analyse und Design

Addison-Wesley, 1994

[Borrmann+Al01] Borrmann, A./Komnick, S./Landgrebe, G./Matèrne, J./
Rätzmann, M./Sauer, J.: Rational Rose und UML, Anleitung
zum Praxiseinsatz

Galileo Computing, 2001

[Brooks95] Brooks, F.P., Jr.: The mythical man-month: essays on
software engineering, 1995 edition

Addison-Wesley, 1995

[Burns00] Burns, D.: The Mental Game of Debugging

Software Development, 3/2000

[Burns] Burns, R.: To a Mouse, On Turning Up Her Nest with the
Plough

November 1785

http://eir.library.utoronto.ca/rpo/display/poem337.html

[CAL] Computer Aided Logistics GmbH, München

http://www.cal.de

[Cert] CERT Coordination Center

Carnegie Mellon Software Engineering Institute

http://www.cert.org/nav/index.html

[Cockburn02] Cockburn, Alistair: games programmers play

software development, February 2002

[Compuware] Compuware Corporation

http://www.compuware.com/products/qacenter

[ConstantLockw99] Constantine, L./Lockwood, L.: Software for Use

Addison-Wesley, 1999

[Cooper95] Cooper, A.: About Face: The Essentials of User Interface
Design

IDG Books, 1995

[DiffUtils] http://www.gnu.org/software/diffutils/diffutils.html

[DostalRieck] Dostal, W./Rieck, M.: Web-Services in der Praxis – eine
Fallstudie

OBJEKTspektrum, No. 4, July/August 2002

[DustinRashkaPaul01] Dustin, E./Rashka, J./Paul, J.: Software automatisch testen

Springer, 2001

Bibliography 3 09

[EdwardsDeVoe97] Edwards, J./DeVoe, D.: 3-Tier Client/Server At Work

Wiley, 1997

[FowlerHighsmith01] Martin Fowler and Jim Highsmith: The Agile Manifesto

software development, August 2001

[FröhlichVogel01] Fröhlich, H.J./Vogel, H.: Systematische Lasttests für
Komponenten: Eine Fallstudie

Objektspektrum No. 6, 2001

http://www.objektspektrum.de

[Ghost] http://www.symantec.com

[gpProfile] http://eccentrica.org/gabr/gpprofile

[Hotlist] Software testing Hotlist, Resources for Professional
Software Testers

Bret Pettichord, Editor

http://www.testinghotlist.com

[iContract] http://www.reliable-systems.com/tools

[IEEE829] IEEE: Standard for Software Test Documentation, ANSI/IEEE
Standard 829-1998

IEEE Computer Society Press, New York, 1998

[IEEEGlossar] http://computer.org/certification/csdpprep/Glossary.htm

[IIT] Illinois Institute of Technologie:

http://www.iit.edu

[ISEDbC] http://www.eiffel.com/doc/manuals/technology/contract/
page.html

[JavaSun] http://java.sun.com/j2se/1.4/download.html

[JBuilder] http://www.borland.com/jbuilder

[jProf] http://starship.python.net/crew/garyp/jProf.html

[JUnit] http://www.junit.org/index.htm

[Kaner] http://www.kaner.com

[Kaner99] Kaner, C.: Recruiting Software Testers

Software Development, 12/1999 and 1/2000

[KanerFalkNguyen99] Cem Kaner, Jack Falk, Hung Quoc Nguyen: Testing
Computer Software, Second Edition

Wiley, 1999

31 0 Bibliography

[KanerBachPetti02] Cem Kaner, James Bach, Bret Pettichord: Lessons Learned in
Software Testing

Wiley, 2002

[Keuffel99] Keuffel, W.: Extreme Programming

Software Development 2/2000

[KoeMo00] Koenig, A. and Moo, B.: C++ Performance

JOOP 1/2000

[Kruchten99] Kruchten, P.: The Rational Unified Process, An Introduction

Addison-Wesley, 1999

[LoadRunner] http://www-svca.mercuryinteractive.com/products/
loadrunner

[log4j] http://jakarta.apache.org/log4j/docs

[MaleySpence01] Maley, D./Spence, I.: Supporting Design by Contract in C++

Journal of Object-Oriented Programming, August/
September 2001

[Marick] Brian Marick, Testing Foundations

http://www.testing.com

[Marick97] Marick, B.: How to misuse code coverage

http://www.testing.com/writings/coverage.pdf

[McConnell93] McConnell, S.: Code Complete

Microsoft Press 1993

[McConnell98] McConnell, S.: Software Project Survival Guide

Microsoft Press, 1998

[McGregor399] McGregor, J.: Instrumentation for Class Testing

JOOP 3/1999

[McGregor699] McGregor, J.: Test Patterns

JOOP 6/1999

[McGregor799] McGregor, J.: Validating Domain Models

JOOP 7/1999

[McGreMaj00] McGregor, J. and Major, M.: Selecting Test Cases Based on
User Priorities

Software Development, 3/2000

[Mercury] Mercury Interactive Corporation

http://www-heva.mercuryinteractive.com

Bibliography 3 11

[Microsoft99] General Functionality and Stability Test Procedure
for Certified for Microsoft Windows Logo
Desktop Applications Edition

http://msdn.microsoft.com/certification/downloads/
GenFSTest.doc

[MSDN] Microsoft Developer Network

http://msdn.microsoft.com/default.asp

[MSScripting] http://www.microsoft.com/germany/scripting

[MSTechnetSecurity] http://www.microsoft.com/technet/security

[MSVFP] http://www.microsoft.com/germany/ms/
entwicklerprodukte/vfoxpro7

[MSWas] http://webtool.rte.microsoft.com

[Nagle] Test Automation Framework

http://members.aol.com/sascanagl/
FRAMESDataDrivenTestAutomationFrameworks.htm

[NIST] The Economic Impacts of Inadequate Infrastructure for
Software Testing

NIST, 2002

http://www.nist.gov/director/prog-ofc/report02-3.pdf

[Nguyen01] Hung Q. Nguyen: Testing Applications on the Web

Wiley, 2001

[Oesterreich98] Oesterreich, B.: Objektorientierte Softwareentwicklung

Oldenbourg, 1998

[Paessler] http://www.paessler.com

[Pairs] http://www.satisfice.com/tools/pairs.zip

[ParaSoft] PARASOFT Corporation

http://www.parasoft.com

[Pettichord00] Bret Pettichord: Testers and Developers Think Differently

STQE magazine, January 2000

Download available at: http://www.pettichord.com

[Pettichord01] Bret Pettichord: Hey Vendors, Give Us Real Scripting
Languages

StickyMinds.com, 2001

Download available at: http://www.stickyminds.com

[PreVue] http://www.rational.com/products/prevue

31 2 Bibliography

[PushToTest] http://www.pushtotest.com/ptt

[QAResource] Software QA/Test Resource Center

http://www.softwareqatest.com

[Rational] Rational Software Corporation

http://www.rational.com

[Rätzmann99] Rätzmann, M.: Automate Your Testing

FoxPro Advisor 12/1999

[RedGate] http://www.red-gate.com

[Rubel98] Rubel, M.: Coverage and Profiling

FoxPro Advisor, 12/1998

[Rumbaugh+Al93] Rumbaugh, J./Blaha, M./Premerlani, W./Eddy, F./Lorensen,
W.: Objektorientiertes Modellieren und Entwerfen

Hanser, 1993

[RUP] Rational Unified Process

http://www.rational.com/products/rup/index.jsp

[Rupp00] Rupp, C.: Requirements Engineering

Objektspektrum No. 2 / 2000

http://www.objektspektrum.de

[Rupp01] Rupp, C.: Requirements- Engineering und -Management

Hanser, 2001

[Sametinger97] Sametinger, J.: Software Engineering with Reusable
Components

Springer, 1997

[Satisfice] http://www.satisfice.com

[Scapa] http://www.scapatech.com

[Schröder1840] Wilhelm Schröder: Der Wettlauf zwischen dem Hasen und
dem Igel auf der kleinen Heide bei Buxtehude

Hannoversches Volksblatt, 1840

http://www.has-und-igel.de

[Segue] Segue Software, Inc.

http://www.segue.com

[Snap] http://www.impressware.com

[SneedWinter02] Sneed, H.:/Winter, M.: Testen objektorientierter Software

Hanser, 2002

Bibliography 3 13

[Sourceforge] http://sourceforge.net

[Starke] Starke, G.: Effektive Software-Architekturen

Hanser, 2002

[Stress] http://www.testingfaqs.org/t-load.htm

[TaiDani99] Tai, K. and Daniels, F.: Interclass Test Order for Object-
Oriented Software

JOOP 7/1999

[TestEvaluation] http://www.testingfaqs.org/t-eval.htm

[Testframe] http://www.xprogramming.com/testfram.htm

[Teststudio] http://www.rational.com/products/tstudio/index.jsp

[ThallerT00] Thaller, G. E.: Software-Metriken einsetzen – bewerten –
messen

Verlag Technik, 2000

[ThallerH00] Thaller, G. E.: Software Test, Verifikation und Validation

Heise, 2000

[TMT01] Canditt, S./Grabenweger, K./Reyzl, E.: Trace-basiertes
Testen von Middleware

Java Spektrum, Mai/Juni 2001

Contact: erwin.reyzl@siemens.com

[TUBerlinSecurity] http://www.tu-berlin.de/www/software/security.shtml

[UniPassau] http://www.infosun.fmi.uni-passau.de/st/
programmierwerkzeuge

[UniSaarbrücken] http://www.st.cs.uni-sb.de/edu/pwz

[Unisyn] http://www.unisyn.com

[Versteegen00] Versteegen, G.: Projektmanagement mit dem Rational
Unified Process

Springer, 2000

[VMOD97] Dröschel, W./Heuser, W./Midderhoff, R.: Inkrementelle und
objektorientierte Vorgehensweisen mit dem V-Modell 97

Oldenbourg, 1998

[VMware] http://www.vmware.com

[Völter01] Völter, M.: Vor- und Nachbedingungen in Java

Java SPEKTRUM, January/February 2001

31 4 Bibliography

[Wallmüller90] Wallmüller, E.: Software Qualitätssicherung in der Praxis

Hanser, 1990

[WieczMeyerh01] Wiczorek, M. and Meyerhoff, D. (Hrsg.): Software Quality,
State of the art in management, testing, and tools

Springer, 2001

[Williams99] Williams, M.: Testing Medical Device Software Quality

Software Development, 9/1999

[XmlDiff1] http://www.logilab.org/xmldiff

[XmlDiff2] http://www.xml.com/pub/r/1354

[xProgramming] http://www.xprogramming.com/software.htm

[Zambelich98] Totally Data-Driven Automated Testing

http://www.sqa-test.com/w_paper1.html

[ZDNet] http://www.zdnet.de

[Zeon] http://www.pdfwizard.com

Index 3 15

Index

.BAT 162, 207

.dll file 108

.exe file 108

.JS 163

.VBS 163

.WSF 163, 168, 177, 178
3-tier architecture 109
5C characters 265

A
Abbreviations 298
Abstract model 29
Abstract thinking 29
Abstraction 43, 79
Acceptance criterion 52, 69
Acceptance risk 42, 87, 88, 89,

90, 139
Acceptance testing 52, 54, 59, 60,

64, 225
Access protection 62
Access rights 55, 62
Access to database fields 53, 104
Accuracy 29
Accuracy of subject matter 34
Acronyms 298
ActiveXObject 164
Activity 30
Activity flowchart 77, 131, 136
Actor 87
Actual use 49
Ad hoc testing 20
Adaptive software development 28, 29
Adaptive software development

process 43
Add-in 193
Add-on module 62, 63
Address correction 112
Addresses 295
Administration 15
Administrator rights 55
ADO object 171
Agile methods 217
Agile quality management 218
Algorithms 62
Alphanumeric input 109
Analysis 28, 80, 112, 135, 219
Analysis and design templates 68
Analysis paralysis 17
Analytical quality assurance 25

Application architecture 101
Application area 28, 29
Application design 191, 192, 194
Application interface 58, 61, 160,

189, 191
Application layer 197
Application server 127
Appropriate methods of analysis 150
Architect 192, 218, 222
Architecture 162, 273
Archiving test results 196
Area of testing 56
Array 127
Artifacts 71
Asian languages 265
Asian text in programs 299
ASSERT 47, 197
Assertion 47, 198
Assigning access rights 122
Assignment error 53
Attacks, targeted 122
Attentiveness 150, 161
Audit trail 206
Auditor 22
Authorized user 87
Automatable process 28
Automated interface 160
Automated regression testing 220
Automated testing 33, 40, 41, 42, 43,

158, 162, 223
Automated unit testing 162, 180, 220
Automatic evaluation 171
Automatic numbering 121
Automation 158
Availability 51
Availability problem 86

B
Babelfish 282
Background knowledge 51, 189
Bandwidth 124
Basic class 139
Basic functionality 46
Basic scenario, spot check testing 57
Basic tests 61
Best case 31, 92, 99, 102, 104, 109,

113, 115, 117, 136, 173, 187
Best case scenario 106
Best practices 92

31 6 Index

Best-case scenario 31
Beta testing 44, 48
Big Bang 60
Black Box testing 32, 49
Boundary value 57, 61, 95
Boundary value analysis 95, 98
Boundary value testing 57
Brainstorming 74
Branch 104
Branch coverage 130, 132, 139, 211
Branching 138
Brand names 298
Browser 51, 118, 141
Budget constraints 20
Bug report 49, 154
Bug reporting 154, 223
Build 46, 116, 220, 233
Build environments 272
Builds and installers

international software 261
Business model 34, 80
Button 189
Button size 53

C
Calculation 225
Calling sequence 101, 139, 212
Candid discussion 23
Capabilities 16
Capacity limitations 63, 119
Capacity testing 119, 123
Capture & replay 54, 159, 167, 179,

193, 215
CASE construct 106
Cause and effect diagram 96
Cause of errors 152, 230
CD 121
Certified for Microsoft Windows 17
Change 218
Change in status 103
Change management 28, 38, 113, 234
Chaos 28
Character Map tool 281
Character sets and codepages 265
Check boxes 114
Checking 36, 150
Checking method 202
Checking that a bug is eliminated 148
Checklist 61, 62, 63, 134, 161
Circumstances of an error 151
Class 60, 102
Class and object model 70

Class assignments 69
Class attribute 102
Class diagram 80
Class invariants 202
Class library 139
Class method 101
Class-specific test 204
Clean installs 55
Click 191, 194
Client 51, 54, 216
Client/server 124
Cloning hard drives 227
COBOL 208
Code analysis 25
Code coverage 132, 211
Code instrumentation 205
Code review 68, 139
Code-based testing 53
Coding 60
Coding guidelines 53, 68, 70
Collaboration 17, 218, 220
Colors 302
COM interface 210
Combination 143
Combinations of conditions

coverage 131
Combined condition 105
Commercial environment 80
Communication 194
Communication content 194
Communication protocol 117
Comparative value 203
Compatibility 26
Compatibility testing 118
Competing access 130
Competing data requests 124
Competing products 26
Competitive advantage 21
Competitive situation 16
Compile time 252
Compiled language 162
Compiler languages 53
Compiler optimization 105
Complete system 62
Completeness 61, 62, 98
Completeness of the functional

tests 114
Completing test cases 154
Complex event combination 191
Complex interface 82
Complex process 82
Complexity 28, 40, 44, 224, 225

Index 3 17

Complexity risk 86
Component 86, 197
Component architecture 44, 101
Component chain 197
Component conflict 117
Component interface 101
Component separation 193
Component testing 59, 60
Component-based IT structure 51
Component-container relationship 173
Components 51
Comprehensibility 35
Computing operation 101
Computing time 124
Concept recommendation 74
Concurrent users 124
Condition 105
Condition coverage 131, 211
Conditional compiling 205
Conditional expression 105
Configurability 63
Configuration errors 86
Configuration management 118
Configuration risk 86
Conflicting versions 118
Connection 172
Consistent user interface 26
Consolidated invoice 100
Constraints 48
Container hierarchy 205
Content issues 29
Continuous testing 124
Contract negotiation 218
Contract penalty 85
Contract risk 85, 88
Contractual partners 85
Control commands 56
Control data 228
Control flow 202
Conventional testing approach 17
Core problems 17
Correct program behavior 29
Correspondence 114
Cost 63, 103
Coverage 17, 130
Coverage index 130
Coverage of functional properties 17
Coverage of structural components 17
Coverage of system scenarios 141
Creating a project plan 242
Creativity 29
Criteria 23

Criteria for concluding testing 231, 236
Critical data 122
Critical program area 151
Critical situation 100
Critical thinking 67
Currencies 294
Customer 64
Customized software 28
Customized solutions 28

D
Data access 33, 122, 124
Data access components 118
Data format, proprietary 192
Data generation 130
Data integrity 56, 57, 176
Data media 121
Data prepared for printing 196
Data security 122
Data snapshot 210
Data source 173
Data state 173, 200
Data storage 109, 194
Data theft 121
Data type, expected 56
Data volume 124
Database 33, 34, 160
Database access 129
Database design 53, 112
Database desktop 208
Database development 57
Database interface 208
Database modeling 70
Database optimization level 129
Database performance 130
Database size 130
Databases 300
Data-intensive application 209, 210
Date and time formats 292
Date format 98
dBase 209
Deadline 237
Deadlock 56, 124
Debugging 35, 147, 148
Debugging mode 193, 198, 205
Decimal separator 98
Decision tree 96
Default value 93
Degree of coverage 61, 133
Degree of risk 87, 88, 90, 103
Delegation 138
Delete 122, 206

3 18 Index

Delivery note 148
Delphi 181, 182, 198, 203, 212
Denormalized data 196
Design 53, 61, 135, 189
Design by Contract 47, 197, 212
Design by contract 220
Design review 68, 120
Design-based testing 53
Detailed description 82
Detailed specification 29
Detection of errors 24
Deterioration in quality 45
Developer 218, 222
Developer strategy 39
Developer tests 50
Development

Foreign language 243
Development effort 75
Development environment 117, 156
Development process 18, 58
Development tool 116
Diagnostic options 192
Diagnostic tool 193
Diff 175, 207
Diffutils 207
DIN 25
Direct access 34
Discussion 26
Discussion forum 118
Disk image 122
Display error 191
Distributed system 33, 216
Division of labor 218
DLL hell 118
Document review 69, 72
Documentation 217
Documentation of test activities 56
Documented specifications 34
Documenting bugs 147
Domain 28
Domain of work 43
DOS codepage values 276
Double-byte 265
Double-byte overlapping

characters 280
Driver 117, 172
Dump method 205
DUnit 181, 182
Dynamic libraries 251
Dynamic memory 53
Dynamic testing 25

E
Early detection 22
Early integration 66
Ease of installation 55
Economic consequences 192
Economic damage 192
Efficiency of algorithms 53
Effort 224
Effort, estimates of 224
Eiffel 47, 197
E-mail 114
E-mail server 86
Embedded test 18, 41, 47, 63
Embedded testing 187, 197, 220
Encapsulation 171, 204
End-of-day routines 121
ensure 47, 197, 200
Entity 80
Entity-relationship diagram 80
Environmental conditions 29, 35
Equivalence class 94
Equivalence class analysis 94
Equivalent partitioning 98
Error 181, 200, 205, 207
Error accumulation 151
Error case 92, 93, 102, 110, 187
Error condition 99
Error guessing 31, 93
Error handling 61, 98
Error handling strategy 120
Error message 85
Error report 35, 233
Error tracking 223, 231, 237
Error weighting 15
Error-free 31
Errors of omission 134
Errors scattered chaotically 191
Estimate 229
Evaluating test cases 154
Evaluation 29, 33, 34, 160, 171
Event 111, 189
Event control 189
Event handling 189
Event logging 193
Events 62
Examples of potential risk 75
Exception 48, 102, 184, 189, 200
Exception handling 102, 184
Excessive testing 27
Exchange of roles 23
Exec, Windows Scripting Host 207
Execution 29, 32

Index 3 19

Execution of tests 33
Execution time 46
Expected result, expected

outcome 57, 58
Experience 17, 23, 26, 68, 93,

225, 229
Experienced user 27
Experimental testing 20
Expertise 218
Explicit requirement 26, 27, 113
Explicit test 71
Exploratory testing 17, 32, 38, 45
Expression 104
External data 186
External resource names 104
External testers 38
Extra effort 15
eXtreme Programming 17, 181, 185
eXtreme testing 181

F
Failure 181
Fat client 127
Feasibility 69, 219
Feasibility study 60
Feasibility test 75
Feature set 60
FEP 279
Field names 53
Field validation 176
File comparison tools 207
File comparison, masked 175
FileSystemObject 164
Filtering and searching

functionality 290
Finding the source of errors 24
Firewall 141
Fixing bugs, bug fixing 147, 155
Flexibility 28, 29
Floppy 121
Focus 100
Following a plan 218
Font size 53
Fonts 53
FOR loop 105, 117
Foreign characters 276
Foreign language version 242

Customer Service and Technical
Support benefits 256

Formal quality characteristics 26
Formal requirement 20
Formal requirements specification 158

Formal testing methods 16
Framework 139
Framework class 139
Frequency of use 87
Fresh perspective 45
Fun 44
Function 60
Function coverage 134
Function header 48
Function key 26, 62, 111
Function modules 88
Function name 151
Function of an object 141
Function points 229
Function/risk matrix 90
Function/test case matrix 137, 145
Functional categories 91
Functional completeness 63, 113
Functional correctness 61, 62, 98
Functional testing 189, 234
Functional tests 49, 51
Functionality 43
Functionality specification 15, 87
Functionality specifications 52
Functions 98

G
Generating test cases 158
Generating test data 210
German sort orders 286
Getting to know a program 39
Global software development 241
Goal 229
Goal orientation 18
Grammar 296
Granularity 135
Graphic interface 189
Graphics library 118
Gray Box testing 49, 50, 98, 101
Group review 22, 68
Grouping 108
Guerilla testing 39
GUI bugs 191
GUI design 34, 52, 53
GUI prototype 76, 82, 115
GUI test automation 213, 214

H
Hacker 121
Hard coded strings 248
Hardware 86, 116, 123, 223, 233

32 0 Index

Hardware components 120
Hardware configuration 63
Hardware environment 32
Hardware error 121
Hash table 251
Heterogeneous system structure 141
Highly typed 53, 104, 179
Hook 162, 193
Hostile access 55, 121
Hostile attack 87

I
I/O risk 86
I18N

Definition 240
Ideal path 104
IEEE standard 27
IF – THEN – ELSE 138
IF statement 197
Image risk 86
Image, damage to 86
Imagination 93
IME 279
Implausible data input 110
Implementation 185, 193, 194
Implementation details 62
Implicit requirement 26, 27, 29, 52,

86, 113, 114
Implicit test 71
Importing data 121
Inconsistencies in look and feel 15
Incorrect reaction 189
Incremental approach 60
Independent means of checking 154
Indexed database tables 127
Individual 217
Individual assessment 91
Individual test 58, 103, 139, 160
Inexperienced user 27
Influence factor 98, 115, 116,

141, 144
Informal quality characteristics 26
Infrastructure 218
Inheritance 138
In-house projects 28
Initial screening 37
Initial situation 153, 160
Innovative software 28
Input 33, 161
Input and output channel 86
Input data 56, 57, 86, 94
Input parameters 98

Insert 206
Installability 63
Installation 15, 86, 117
Installation conditions 64, 118
Installation manual 34
Installation option 119
Installation testing 55, 117
Installation updates 55
Installer 119
Integrated test case tracking 234
Integrated testing 17, 65
Integration in the system

environment 62
Integration of phases 64
Integration risk 86
Integration test 108, 139
Integration testing 59, 60, 62, 63, 159,

193, 205, 222, 224, 234
Intended effect 100
Interaction 217, 219, 237
Interactive testing 33
Interactive unit testing 187, 220
Interface 44, 49, 60, 102, 109, 110,

185, 193, 194
Interface description 93
Interface errors 86
Interface-centric design 196
Internal beta test 103
internal invariant 201
Internal operations 50
Internal variables 101
International development issues 247

Compile time 249
Debugging 249
Defects 249
Testing 250

International planning and
architecture 241

Internationalization
Build environment 269
Development 269
Internationalized installer 269
Localization 270
Planning 268
Testing 270

Internationalization and localization
testing 239

Internationalization testing 271
Internet 123, 141
Interpreted language 162, 179
Interpreter language 53
Intranet 123, 141

Index 3 21

Invalid allocations of values 69
Invalid condition 93
Invalid nesting 69
Invalid value 93
invariant 47, 197
Invariants 47, 48, 197, 201
Isolating bugs 147, 152
Isolation 152
Isolation layer 215
IT environment 26
Iteration 60, 64, 218
Iterative software development 60

J
Japanese phonetic sort order 288
Japanese writing systems 287
Java 212, 214
Java languages codes 264
Java virtual machine 141
JavaDoc 213
JavaScript 162, 163
JBuilder 212
JScript 160, 162, 163, 207, 210
JUnit 181

K
Key features 31
Keyboards 283
KeyPress 191
Key-value pair 251
Knowledge of what is being tested 16
Known errors 38

L
L10N

Definition 240
Label location 53
Language codes 263
Layer 44
Layout specifications (CLF, Common

Look and Feel) 34, 53, 61
Length of use 55
Lines of code 229
Linking to the interface 111
Linux 175, 207, 215, 227
List of known bugs 237
Live testing 44, 48
Load testing 119
Loading strings dynamically 252
Localizable strings 274

Localization
Definition 239

Localization testing 239, 253
Localizing errors 35
Locking mechanism 112
Logging 211
Logging changes to data 206
Logging Framework 212
Login 121
Long-term testing 55
Look and Feel 15
Look and feel 18, 26, 53
LostFocus 194

M
Maintenance 86
Major release 225
Management 218
Management of the testing process 24
Manufacturing quality 71
Marginal condition 92, 150
Masked file comparison 175, 208
Maximal case 92, 93, 99, 102,

109, 118
Maximum file size 119
Maximum load 123
Maximum value 58, 93
Measurements 302
Measuring tool 23
Meeting note 114
Memory eaters 55
Memory use 124, 212
Mental model 51
Menu 62, 111
Menu item 15, 114, 151
Message files 250
Metadata 32, 228
Method 60, 217
Method call 101
Microsoft language codes 263
Microsoft Visual FoxPro 210, 212
Microsoft Visual Studio 170, 209
Microsoft Visual Studio .NET 213
Middleware 127
Minimal case 92, 99, 102, 110, 117
Minimal condition 93
Minimal configuration 110, 116
Minimal value 93
Minimizing risk 20
Minimum resources required for

operation 55

32 2 Index

Minimum system configuration 123
Miracle methodology 188
Missing functionality 114
Missing return values 69
Missing value 93
Mission 16, 22, 23
Mnemonics 290
Model 92, 217
Model validation 25, 68, 70, 72
Modularizing 44
Module design 60
Module testing 59, 60
Mouse actions 33
Mouse clicks 56
MS DOS 162, 207
MS Windows 175, 207, 209
MS-VFP 209
Multiple code bases 244
Multiple user access 86
Multiple user operation 62

N
Naming conventions 53
Native language centric plans 243
Natural 208
Nested transaction 207
Network 121
Network capacity 124
Network connection 86
Nightly build 66
Non-existent procedures 69
Normal operations 44
Normalized basic data 196
Normalized data 196
Number of concurrent users 54, 127
Numbers 295

O
Object dump 205
Object of the game 22
Object orientation 138
Object state 101, 139
Object-oriented analysis 135
Obsolete code 158
Obsolete interface 86
ODBC driver 172
ODBC OLE DB provider 172
Off-the-shelf software, OTC

software 28
Older program version 55
OLE DB provider 172

One source principle 48
OnEntry 191
OnExit 191, 194
Online Help 34, 85, 192
OOA/OOD 141
Operating system 26, 63, 86, 115,

223, 227
Operating system interface 115
Operating system version 116
Operational conditions 64
Operational integrity 56, 200
Optimistic locking behavior 112
Outdated program architecture 86
Overall test plan 151
Overload 123
Oversights 54
Overview 80

P
Page numbering 121
Pair programming 22
Pair testing 17
Paper sizes 284
Parameter 62
Parameter errors 61
Parameterization 86
Parent-child relationship 173
Passing parameters 98, 200
Password 121
Past mistakes 68
Path coverage 131, 132, 139
Pattern 92
PDF 196
Peer review 22, 68
Penetration testing 123
Perceived quality 112
Performance 51, 62, 98, 119, 214
Performance comparison 54
Performance losses 200
Performance test 33, 46
Performance testing 54, 123
Performance under heavy loads 62
Period of time, for spot check tests 57
Perl 160, 163
Permanent quality control 72
Permanent regression test 48
Phase of testing 58, 59
Phases 59
Phone numbers 295
Physical memory 124
Planned testing approach 56
Planning 29, 30, 217, 223, 272

Index 3 23

Pointer calculations 53
Polymorphism 138
Pool of data 57
Portable Document Format 196
Positive test 42, 46, 52, 135
Postal codes 295
Postcondition 47, 197, 200, 203
Postconditions 47, 48
Posting record 148
Practicability 20
Practical experience 74
Practical work 28
Practice 24, 29
Practitioners 20
Precondition 47, 48, 197, 199
Preconditions 47, 139
Print job 121
Print layout 196
Printer 86
Printer driver 196
Printing 284
Printouts 195
Priority 84, 134, 151, 157
Proactive steps 23
Problem description 44
Problems working with dialogs 257
Procedure 157
Procedures 99
Process 64, 217
Process automation 28
Process improvements 68
Processing and interface modules 62
Processing chain 109, 197
Processing layer 110, 196
Processing logic 109
Processing speed 54, 55
Processor 116
Processor speed 116
Processor time 212
Processor use 212
Process-oriented approach 58, 64
Product 217, 237
Product orientation 65
Product series 26
Product versions 26
Production code 205
Production process 64
Production-oriented approach 58
Productive quality assurance 25
Professional tester 17
Profiler 206
Profiling 211

Program analysis 94
Program behavior 48
Program configuration 118
Program enhancement 42, 114
Program feature 31, 87, 88, 89
Program flow 39
Program functionality equal across

language products 254
Program improvement 42
Program layers 44
Program modification 114
Program name 151
Program performance 54
Program response 82
Program start 111
Program unit 60
Programming guidelines 191, 194
Programming language 33, 159, 162
Programming style 191
Project goals 16
Project plan 84, 242
Project practices 20
Project progress 220
Project scale 24
Properties files 250
Property 102
Property, or attribute 102
Proprietary scripting language 179
Prototyping 72, 219
Providing details on use cases 81
Pseudo build 274
Pseudo language builds 255
Public interface 102
Python 160, 163, 214

Q
QA officer 38
Quadratic effect 125
Qualification 68, 223
Quality 25
Quality assurance 24, 25, 218,

223, 271
Quality characteristic 27, 29
Quality control 24, 231
Quality improvement 27
Quality management 218
Quality metrics 229
Quality objective 218
Quality, perceived 112
Quality, the term 25, 28, 29
Quantity risk 87

32 4 Index

R
RAM 128
Random component 57
Random data testing 56
Random number generator 56, 57
Random operation 56
Random workflow 56
Ranking 16
Rapid Application Development 18, 72
Rapid Application Testing 16
Rapid Testing 16
Rate of frequency 88
Ready for market 19
Real result 34
Realistic schedule 218
Real-World data 57
Reasonable costs 27
Record and playback 159
Record validation 176
Record/playback myth 159
RecordSet 172
Redundant data 196
Refactoring 132, 186
Reference data 57
Reference program 57
Reference to the user 27
Reference value 160, 171
Referential integrity 112, 176
Region codes 265
Registration 118
Regression 45, 158
Regression testing 45, 54, 59, 63, 84,

114, 132, 157, 158, 173, 225
Relational database 173, 209
Release versions 45
Release, major 225
Reliability 33, 51
Remaining risk 158
Removable data media 121
REPEAT ... UNTIL 105
Report 196
Report generator 196
Reproducibility 153
Reproducing errors 152
require 47, 197
Requirement 26, 28, 49, 61, 69,

76, 85
Requirements 221, 234, 235
Requirements analysis 60, 234
Requirements management 28, 113
Requirements-based testing 51
Research 17

Resources 38, 55
Response time 33, 62, 87, 124, 128
Response times 54
Result type 181
Retest 35
Return value 62, 98, 200
Reusability 139
Reuse 186
Reusing tests 177
Review 25, 53, 61, 68, 74, 80,

191, 194
Review checklists 69
Review of a requirements

specification 69
Reviewer 68
Reviewing a class model 69
Reviews 218, 219, 220
Rexx 160, 163
Risk 17, 218, 223, 237
Risk analysis 132, 219, 222
Risk assessment 49, 84, 91, 151, 186,

230, 237
Risk class 226
Risk type 85, 91
Risk, estimating 139
Risk-oriented testing 85
Robustness 29, 33, 51, 56, 124, 189
Robustness testing 54, 119
Role in the game 23
Routine tasks 161
Rules of the game 23
Running a test case 147
Run-time 53, 104, 138
Runtime 53
Run-time behavior 115
Runtime behavior 63
Run-time errors 53, 105
Runtime errors 53
Runtime log 211
Run-time system 115, 179
Run-time tests 199

S
Sabotage 121
Sample reports 34
Scalability 128, 214
SCCS 46
Scenario 75, 78, 114, 115, 137, 144,

160, 186, 223
Schematic check 161
Screen form 26, 194
Screenshot 45, 153

Index 3 25

Script 158
Script Debugger 168, 170
Scripted testing 17
Scripting 160, 162, 209, 223
Scripting alternatives 179
Scripting language 162, 179
Scripting.FileSystemObject 166
Seasons 301
Security 62
Security risk 87
Security testing 55
Self-awareness 21
Self-confidence 151
Self-organization of the team 218
Self-test 193, 199
Self-testing routine 192
Semi-automated test 161
SendKeys 167
Separate testing group 62, 63
Separating strings from code 250
Sequence diagram 79, 216
Serious errors 16, 22
Server 51, 127, 216
Service pack 116
Service technician 192
SetUp 183
Shell script 162
Shipping costs 253
Shipping products simultaneously 253
Shortcut key 26
Shortcut keys 290
Show stoppers 22, 237
Side effects 173, 203
Signs 302
Simple Object Access Protocol 194
Simplicity 179
Simulation 129
Single invoice 101
Single-byte 265
Single-layer application 111
Skills 16
Smoke test 45, 46, 63, 116
Smoke testing 220
SOAP 194
Software architect 221
Software architecture 192, 219
Software area of use 57
Software designer 192
Software development models 28
Software development schedule 245
Software kernel 29
Software life cycle 37

Software metrics 229
Software modularization 218
Software solution 44
Software validation process 18
Sorting 284
Source code 44, 53, 95, 98, 211
Source code control system 46, 118,

158, 205
Source code debugger 54, 99
Source code review 120, 134
Source code structure 104, 186, 201
Source code validation 104
Spanish sort orders 286
Special situations 54
Special tools 192
Special wish lists 28
Specialist 218, 222
Specialists 48
Specialization 24
Specialized field 26
Specialized terms 43
Specific task 100
Specification 185
Specified original state 149
Speed 29, 117, 123
Spelling 296
Spelling errors 18, 104
Spot check test 46, 52
Spot checks 57
Spot-check testing 56, 57
SQL 173, 209
Stability problem 86
Stakeholder 16
State change 139
State flowchart 139, 141
State of an object 199
State of the program 56
State-based path coverage 139, 141
State-dependent objects 128
Stateless object 128
Statement coverage 53, 61, 130,

139, 211
Static code analysis 68, 69
Statistical testing 25
Status of an object 101
Step 140
Stock transaction 148
Storage media 55
Stored procedures 122
Strategic thinking 151
Strategies 18
Stress and performance test 213

32 6 Index

Stress testing 54, 55, 123, 128
String expansion 257

accounting for via layout 258
accounting for via separate
resources 261

String tables 250
Structural faults 69
Structural tests 49
Structure 50, 60
Structure test 104
Structured basis testing 104
Stub 124
Style guides 26
Subsequent use 103
Subsystem 194
Success, focus on 24
Successful deinstallation 55
Suits, recourse claims 119
Support 86
Support engineer 218
Support function 171
Supporting features 31
Symbols 302
Synchronization 111, 212
Synchronization error 191
Synchronization risk 86
System components 115
System conditions 54
System crash 120
System design 28, 60, 61, 73, 77
System environment 42, 223
System equipment 233
System events 62
System family 115
System information 212
System interface 115
System load 54
System parameters 123
System resources 124, 186
System scenario 141
System security 121
System settings 98
System software 116
System specifications 50
System state 150
System testing 59, 60, 62, 63, 113,

159, 222, 224
System version 115
Systematic approach 151
Systematic debugging 148

T
Tape 121
Target platform 115
Target platforms 55
Task description, software

development task description 34,
49, 72, 85

TCL 163
Team 218
Teaming 98, 141
TearDown 183
Technical documentation 192
Technical field 26
Technical risk 42, 87, 88, 91, 139
Temporary files 55
Temporary memory 124
Temporary printing tables 196
Terminology 298
Test adapter 194
Test agent 214
Test automation framework 215
Test case 30, 76, 92, 144, 181
Test case status 233
Test case tracking 223, 233
Test case tracking, integrated 234
Test code 48, 204
Test coverage 130
Test data 32, 150, 228
Test design 30, 222
Test document 35, 236
Test driver 48, 167, 179, 180, 205
Test environment 32, 157, 160
Test evaluation 153, 171
Test framework 33, 63, 158, 162, 179,

181, 193, 205
Test hierarchy 181
Test interface 33
Test machine 227
Test management 132
Test management environment 160
Test maturity model 40
Test metrics 229
Test model 82, 92
Test object 49
Test outcome 33, 34, 35
Test pattern 92
Test plan 222
Test planning 30, 32
Test planning model, classic 59
Test platform 210
Test procedure 29, 158

Index 3 27

Test project 181
Test reproducibility 32
Test result 30
Test scenario 144, 228
Test script 160, 209, 215
Test scripts 233, 236
Test situation, the 30
Test suite 178, 180, 181
Testability 192, 193
Test-driven application

development 191
Test-friendly design 150, 162, 171
Testing

Foreign language 244
Testing activities 58
Testing and automating tools 40
Testing and improving 39, 147
Testing and tuning 35, 39
Testing by documenting 45
Testing by using 18, 43, 186, 187
Testing cycle 20, 23
Testing environment 60
Testing periods 52
Testing possibility 80, 82
Testing priority 85, 87, 88, 89
Testing procedure 19, 159
Testing situation, ideal 39
Testing strategies 28, 38
Testing time 253
Testing tool 223
Test-oriented design 225
TestRunner 181
Theories 20
Theorists 21
Thin client 127
Third-party product 110
Third-party vendor 118
Time 218
Time and date formats 243
Time limitations 20
Time risk 86
Time used 212
Timeframe 87
Timeout control system 117
Timer object 117
Timing 117
TMM level 1 40
ToDo list 147
Tool 207, 217
Tool support 33
Toolbar 62, 111
Top-down approach 84

Total Application Testing 16
Tracing 211
Trade receivables 102
Transaction 62, 109, 111, 216
Transaction chain 109
Transformative software

development 28
Translation vendors 270
Trigger 206
Trust 218
try ... except 184, 199
try ... finally 206
TÜV, German Technical Control

Association 226
Two-fold benefít 24
Type mismatch 105

U
UDDI 194
UML 216
Unauthorized access 63
UNC 188
Uncertainty 20
Unicode standard 266
Uninstallability 119
Unintended effect 100
Unit 60
Unit Testing 60
Unit testing 48, 59, 60, 63, 97, 158,

179, 193, 205, 222, 224, 234
Universal Description, Discovery and

Integration 194
Universal Naming Convention 188
UNIX 162, 175, 207, 215
Unknown requirement 29
Unreachable code 69
Unrealistic schedule 85
Unsuspected error 91
Unused variables 69
Update 206
Upgradable version 118
Upgrade 116, 118
Usability 15, 21, 43, 85
Usability lab 44
Usability testing 222
Use 15
Use analysis 115
Use case 15, 34, 82, 85, 87, 88, 114,

115, 161, 223, 235
Use case analysis 75, 87, 135
Use of components 160
User 222

3 28 Index

User access 127
User account 122
User action 159, 161
User authentication 121
User group 118
User ID 122
User interface 26, 33, 39, 83, 215
User interface design flaws 18
User manual 34, 45, 83, 114
User permission 55, 98
User perspective 20
User priority 49, 87
User profile 49, 128
User satisfaction 85, 87
User testing 222, 225
User-friendly behavior 110
Users 22
UTF8 267

V
V model 64
Validated input data 46
Validation program 34
Value allocation 102
Value of an influence factor 141
Value pair 143
Value types 53
Variables

Internationalization 247
Variables, internal values 171
Variety 48, 56
VBScript 160, 163, 210
Verification 157
VFP 209, 210, 212
View, database 209
Virtual machines 227
Virtual memory 124
Virtual users 128, 130
Viruses 121
Visibility of class attributes 69
Vision 29, 219
Visual Basic Scripting Edition 163
Visual FoxPro 198, 209
Visual Studio .NET 209
Volume problem 94, 98, 115, 118
Voucher 112, 140, 196

W
Wait cycle 117
Walkthrough 54, 72, 78
Warranted characteristic 119
Waterfall model 64
Weak point 79
Web application 51, 120, 127, 128,

141, 213
Web Services 194, 214
Web Services Description

Language 194
Weight 84
Well-formed 34
WHILE loop 105
White Box testing 32, 49, 50, 53
Widget 111
Willingness to communicate 67
WinDiff 175
Windows 162, 227
Windows codepage values 277
Windows Scripting 162
Windows Scripting Host 162
Work process 140
Workaround 15
Workflow 18, 28, 29, 31, 43, 53, 62,

82, 85, 86, 120
Workflow test case 140
Working autonomously 218
Working software 217, 219
World, ideal 21
Wrong mental image 151
WScript.Network 166
WScript.Shell 166
WSDL 194
WSH 162

X
xBase 209
XML 34, 163, 167, 168, 173, 176, 194,

196, 205, 208, 209
XML Diff 176, 194, 207, 208
XP 181
XSL stylesheets 196
X-Windows 215

Y
YEN sign 280

