
Software Testing Fundamentals: Methods and Metrics

by Marnie L. Hutcheson ISBN:047143020X

John Wiley & Sons © 2003 (408 pages)

A software tester's survival guide from a leading expert in the field.

Table of Contents

Software Testing Fundamentals—Methods and Metrics

Introduction

Chapter 1 - The State of Software Testing Today

Chapter 2 -
Maintaining Quality Assurance in Today's Software Testing
Environment

Chapter 3 - Approaches to Managing Software Testing

Chapter 4 - The Most Important Tests (MITs) Method

Chapter 5 - Fundamental Metrics for Software Testing

Chapter 6 - The Test Inventory

Chapter 7 - How to Build a Test Inventory

Chapter 8 - Tools to Automate the Test Inventory

Chapter 9 - Risk Analysis

Chapter 10 - Applied Risk Analysis

Chapter 11 - Path Analysis

Chapter 12 - Applied Path Analysis

Chapter 13 - Data Analysis Techniques

Chapter 14 - What Our Analysis Tells Us and What's in Store in the Near Future

Appendix A - Answers to Exercises

Appendix B - Software Testing Questionnaire, Survey and Results

Appendix C - Test Collateral Samples and Templates

References

Glossary

Index

List of Figures

List of Tables

List of Sidebars

Back Cover

Software testing expert Marnie Hutcheson explains both the theory and the practical application of her down-
to-earth approach to risk-based testing, the Most Important Tests (MITs) method. The many proven tools,
methods, and metrics examined can be used to ensure that you always have reliable, functional software and
systems. Software Testing Fundamentals presents a best practice approach that can be applied to almost any
project, from the largest systems to the smallest Web sites. Discover how the MITs method can be used to
evaluate test needs, get the budget, show the value of testing, and perform a successful test effort.

Rich with examples from real-world development projects that range from traditional to eXtreme, this book
shows you:

How to pick the most important tests for your test effort, whether it is well-planned or design-as-you-go
Ways to use measurement to test software, to communicate the results to others, and to make
improvements
How to use tools you already have to automate your test effort so you can boost your testing efficiency
Tips on how to demonstrate the value added by your test effort
Tools and analysis techniques for test estimation, sizing, and planning

About the Author

Marnie L. Hutcheson has been a test practitioner and systems integrator since she brought shopping online at
Prodigy Services Company in 1987. Marnie is an internationally published author and speaker in the areas of
software development, testing and quality assurance, and systems administration.

Software Testing Fundamentals-Methods and
Metrics
Marnie L. Hutcheson

Wiley Publishing, Inc.

Executive Publisher: Robert Ipsen

Senior Editor: Ben Ryan

Assistant Developmental Editor: Scott Amerman

Editorial Manager: Kathryn A. Malm

Assistant Managing Editor: Vincent Kunkemueller

Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper.

Copyright © 2003 by Wiley Publishing Inc., Indianapolis, Indiana.

All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447,
fax (317) 572-4447, E-mail: <permcoordinator@wiley.com>.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including but
not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered
trademarks of Wiley Publishing, Inc., in the United States and other countries, and may not be used
without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-43020-X

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ACKNOWLEDGMENTS

When a subject is well understood, it can be explained in a few words, but the road to that
understanding can be a long one, indeed. Every human being since the beginning of time has
understood the effects of gravity-you trip, you fall down. Yet Sir Isaac Newton explained this
phenomenon briefly and accurately only recently on the human time scale.

I have been working on developing the material in this book and circulating it back to testers and their
management for many years. Most of the methods and techniques presented here are simple, but good
answers don't have to be difficult. Many of these methods are about as old and patentable as oatmeal;
others are new. Many of these methods have been discussed and debated for months and even years
with colleagues.

The first four chapters of the original version of this book have been available online for four years. In
that time the number of readers has risen steadily; presently about 350 visitors read these chapters
each week. More than 2,500 software testers and managers in various industries reviewed this work
and provided feedback on it. To all those who took part in those discussions, asked questions, picked
nits, or came back and reported which steps they tried to implement and how it worked, I want to say
again, "Thank you. And don't stop the feedback; that's how we improve our knowledge."

Thanks to Minna Beissinger, Joseph Mueller, Eric Mink, Beate Kim, Joan Rothman, L. Gary Nakashian,
Joy Nemitz, Adrian Craig Wheeler, Lawrence Holland, John Chernievsky, Boris Beizer, Dorothy
Graham, Roger Sherman, Greg Daich, and Tom Gilb.

I want to express my special thanks to my technical reviewer, researcher, and product developer, David
Mayberry. This work would probably not exist except for his patience and continuing efforts. I also want
to thank my editors at Wiley; Ben Ryan and Scott Amerman, Vincent Kunkemueller, and all the others
who were so patient and supportive as they added their talents to the making of this work. And finally,
many thanks to my research assistants, and my artistic staff, Velvalee Boyd and Dane Boyd.

ABOUT THE AUTHOR

Marnie Hutcheson creates technical courseware for Microsoft Corporation and travels around the
world training the trainers who teach these technologies to the world. She is an internationally
published author and speaker in the areas of software development, testing and quality assurance, and
systems administration.

She began her career in engineering at Prodigy Services Company in 1987 as the Lead Systems
Integrator for Shopping, and later Banking and Financial Services. Over the years, she has become a
leader in the development of the Web and has helped corporations like GTE and Microsoft develop and
launch several major Internet technologies.

Prior to that, she was a student of the performing arts for over 25 years. She performed on stage, in
classical ballet, musical theater, folk singing, and opera for 10 years in Denver, Montreal, Boston, and
New York.

She also taught dance in institutions and colleges during those years. In the late 1970s, she was the
dance instructor and assistant choreographer to U.S. Olympic skating coach, Don Laws, and Olympic
choreographer Riki Harris. She worked with U.S. Olympians, elite skaters, and gymnasts in the United
States and Canada.

Introduction

I live in a software development world where product development is not an orderly consistent march
toward a tangible goal. "The Project Plan" usually consists of a laundry list of functions dropped off by
somebody from marketing. Management embellishes "The Plan" with start and end dates that are of
highly questionable origins and totally unreachable. The design and implementation of the product are
clandestinely guarded by developers. The product routinely arrives in test virtually unannounced and
several weeks late. The tester has not finished the test plan because no one is quite sure what the
thing does. The only sure thing is the product must ship on time, next week.

That is software development-chaotic and harried. This book is dedicated to the proposition that this
development system is primitive and enormously wasteful. This book presents several methods that
provide better ways to perform the business of understanding, controlling, and delivering the right
product to the market on time. These methods, taken singly or in groups, provide large cost savings
and better-quality products for software developers.

I am a practitioner. I work where the rubber meets the road. I am often present when the user puts their
hands on the product for the first time. I deal with real solutions to real problems. I also deal with the
frustration of both the customers (who are losing money because the product is failing in some way)
and the front-line support people. Front-line support is typically caught in the middle between
development groups, who have other priorities, and the customer, who needs the system fixed "right
now."

I work with the developer, whose job is to write good code. Developers do not have time to fill out all
those forms quality assurance wants, or to compose an operations document that the test and support
groups need. I work with the testers, who really don't know what's going on back there in the system.
They keep breaking it, but they can't reproduce the problems for development. And I work with the
document writers, who can't understand why the entire user interface changed just two weeks before
the end of the test cycle.

My role is to prevent failures and enhance productivity through automation and process optimization. I
work primarily on applications running in large networks. These systems are huge and contain a variety
of components that need to be tested. Typically, there are object-oriented modules and graphical user
interfaces (GUIs), and browser-based interfaces. These applications typically interact with databases,
communications networks, specialized servers, and embedded code, driving specialized hardware-and
all of them need to be tested. The methods in this book are distilled from experiences, both failures and
successes, with projects that have touched all of these areas.

This is also a work about "how to solve problems," so it is rich with commentary on human factors.
Systems are designed, written, integrated, tested, deployed, and supported by human beings, for
human beings. We cannot ignore the fact that human factors play a major role in virtually all system
failures.

What This Book Is About

This book is a software tester's guide to managing the software test effort. This is not a formula book of
test techniques, though some powerful test techniques are presented. This book is about defensible
test methods. It offers methods and metrics that improve the test effort, whether or not formal test
techniques are used. It is about how to use metrics in the test effort. There is no incentive to take
measurements if you don't know how to use the results to help your case, or if those results might be
turned against you. This book shows how to use measurement to discover, to communicate those
discoveries to others, and to make improvements.

Some time back I was presenting an overview of these methods at a conference. Part of the
presentation was a case study. After these methods were applied, a test inventory was built, and the
risk analysis was performed for the system, it was determined within this case study that the optimal
test coverage given the time and resources allowed was 67 percent coverage of the entire test
inventory.

During the question-and-answer session that followed my presentation, a very distinguished and tall

fellow practitioner (he stands well over six feet) said, "Excuse me for mentioning this, but it strikes me
that you are a very small person. I was wondering where you find the courage to tell your managing
director that you only plan to test 67 percent of the system?"

My answer: "It is true that I am only 5'6", but I am big on the truth. If management wants to give me
enough time and resources to test every item on the inventory, I will be happy to do so. But if they want
me to do with less than that, I am not going to soft sell the fact that they will get less than 100 percent
test coverage. If there isn't time and resources to test everything, then I want to be sure that the tests
conducted are the most important tests."

I am also going to tell management how good that selection of tests was, how many bugs the test effort
found, how serious they were and how much it cost to find them, and if possible, how much was saved
because we found and removed them. I will measure the performance of the test effort and be able to
show at any time whether we are on schedule or not, if the error densities are too high, or if the bug-fix
rate is too low. If we cannot stay on schedule, I can give management the high-quality information it
needs to do what it does best, specifically, manage the situation.

Industry and Technology Trends: Why I Think It's Time to Publish
This Book

I began developing these methods in the late 1980s when I worked at Prodigy. They evolved to suit the
needs of a fast-paced development environment feeding a large, complex real-time system. They were
called the Most Important Tests method, or MITs. MITs quickly became the standard for testing
methods at Prodigy, and I began writing and publishing case studies of MITs projects in 1990. I took
MITs with me when I left Prodigy in 1993, and it continued to evolve as I tackled more and more testing
projects in other industries. I spent most of the last 10 years helping businesses embrace and profit
from integrating large systems and the Internet.

The (PowerPoint-based) syllabus that I developed to teach MITs since 1993 is based on the first seven
chapters that I wrote for the original book, Software Testing Methods and Metrics. The emphasis then
was on client/server testing, not the Internet, and that is reflected in the original chapters.

First offered in 1993, the course has been taught several times each year ever since. I put the original
first four chapters on my Web site in 1997. The number of people reading these four chapters has
increased steadily over the years. This year some 17,000 visitors have downloaded these chapters.
The most popular is Chapter 2, "Fundamental Methods." Because of its popularity and the many e-mail
discussions it has sparked, it has been expanded here into Chapter 3: "Approaches to Managing
Software Testing," and Chapter 4: "The Most Important Tests (MITs) Method."

Changing Times

I spent most of 2001 working on Microsoft's .NET developer training materials, and in the process, I
became very familiar with most of the facets of .NET. Bottom line is, the new .NET architecture, with its
unified libraries, its "all languages are equal" attitude about development languages, and its
enablement of copy-and-run applications and Web services brings us back to the way we did things in
the early 1990s-those heady days I spent at Prodigy. The big and exciting difference is that Prodigy
was small and proprietary; .NET will be global and public (as well as private).

It will be two years before we really begin to see the global effects of this latest shortening of the
software development cycle. Literally, anyone can deploy and sell software as a Web service on global
scale, without ever burning a CD, or writing a manual, or paying for an ad in a magazine. And at some
point, that software will be tested.

The picture becomes even more interesting when you consider that we are now just beginning the next
wave of Internet evolution; the mobile Internet. Just as the PC revolutionized the way we do business
today, the smart phones and pocket PCs will allow more people than ever before to access dynamic
applications on small screens, with tenuous data links. The methods in this book evolved in just such
an environment, and were successful.

Software testing must show that it adds value, and that it is necessary for product success. Otherwise,
market forces will encourage competitive shops to forego testing and give the product to the users as
fast as they can write it and copy it to the server.

This book is about fundamentals, and fortunately, "fundamental" concepts, while sometimes out of
style, evolve very slowly. The examples in the original Prodigy work were out of style in the client/server
days; they are very much back in style in the .NET world. In many ways, revising this work to be current
today is actually taking it back to its original state.

Scope of This Book and Who Will Find It Useful

This book is a field guide aimed squarely at testers and management involved with developing software
systems and applications. It contains practical solutions, not theory. Theory and background are
presented only to support the practical solutions.

This is a tester's survival guide because it helps testers supply answers that management understands
and respects. Testers need to answer the question, "Why can't you have it tested by next week?" This
work is also a manager's survival guide because managers have to explain why things are the way they
are, how much it's going to cost, and why.

The methods presented here were developed in large networks. Often these networks are running a
combination of Web-based and client/server-based applications, some on the public Internet and some
running privately behind the firewall. These systems are generally written at least in part using object-
oriented languages, and all are accessed using graphical user interfaces, be they dedicated clients or
Web pages running in a browser. These test methods have been used to test a rich variety of other
software systems as well, including telecommunications, business applications, embedded firmware,
and game software.

The process described in this book is a top-down approach to testing. These methods can be used to
test at the unit level, but they are more useful in integration, system, and end-to-end test efforts. These
test methods are often used later in the project life cycle, in load testing, performance testing, and
production system monitoring. Opportunities for automation or test reuse are noted as appropriate.

Last, this is not an all-or-none test guide. A process improvement can result from implementing parts of
these methods, like adding a metric to test tracking, or prioritizing tests and keeping track of how long
each one takes to run.

How This Book Is Organized

The chapters have been organized to parallel the process flow in most software development and test
efforts. Successive chapters tend to build on what came in the chapters before; so jumping right into
the middle of the book may not be a good idea. It is best to proceed sequentially.

Case studies, notes on automation, test techniques, usability issues, and human factors appear
throughout the text. It is broken into three main blocks:

Chapters 1 to 5 concentrate on background and concepts.

Chapters 6 to 8 focus on the inventory and how to make it.

Chapters 9 to 14 cover tools and analysis techniques for test estimation, sizing, and planning.

The Standard for Definitions in This Book

The standard for all definitions given in this book is Webster's New World Dictionary of the American
Language (College Edition, Prentice Hall). However, any good dictionary should be acceptable. When I
refer to a definition from some other work, I will cite the work. I have tried to limit such references to
works that are readily available to everyone today.

One of the major stumbling blocks I have encountered in educating people involved in developing and
testing software is the lack of consensus on the meaning of basic terms. This is richly illustrated in the
test survey discussed in Chapter 1 and presented in Appendix B of this book.

The biggest reason for this lack of consensus is that while there are plenty of standards published in
this industry, they are not readily available or easy to understand. The second reason for the lack of
consensus is simple disagreement. I have often heard the argument, "That's fine, but it doesn't apply
here." It's usually true. Using the dictionary as the standard solves both of these problems. It is a
starting point to which most people have access and can acknowledge. It is also necessary to go back
to basics. In my research I am continually confronted with the fact that most people do not know the
true meaning of words we use constantly, such as test, verify, validate, quality, performance,
effectiveness, efficiency, science, art, and engineering.

To those who feel I am taking a step backward with this approach, it is a requirement of human
development that we must learn to creep before we can crawl, to crawl before we can walk, and to walk
before we can run. The level of mastery that can be achieved in any phase of development is directly
dependent on the level of mastery achieved in the previous phase. I will make as few assumptions as
possible about my readers' level of knowledge.

We software developers and testers came to this industry from many directions, many disciplines, and
many points of view. Because of this, consensus is difficult. Nevertheless, I believe that our diversity
gives us great strength. The interplay of so many ideas constantly sparks invention and innovation. The
computer industry is probably home to the largest cooperative inventive undertaking in human history. It
simply needs to be managed.

Chapter 1: The State of Software Testing Today

Overview

The director asked the tester, "So you tested it? It's ready to go to production?

The tester responded, "Yes, I tested it. It's ready to go."

The director asked, "Well, what did you test?"

The tester responded, "I tested i t."

In this conversation, I was the tester. It was 1987 and I had just completed my first test assignment on
a commercial software system.[1] I had spent six months working with and learning from some very
good testers. They were very good at finding bugs, nailing them down, and getting development to fix
them. But once you got beyond the bug statistics, the testers didn't seem to have much to go on except
it. Happily, the director never asked what exactly i t was.

The experience made me resolve to never again be caught with such a poor answer. I could not always
be so lucky as to have management that would accept i t for an answer. All my training as a structural
engineer had prepared me to give my management a much better answer than it.

Suppose the supervisor on a building project asked if I tested the steel superstructure on Floor 34 and
needed to know if it was safe to build Floor 35. If I said "yes" and if the supervisor then asked, "What
did you test?" I would have a whole checklist of answers on the clipboard in my hand. I would have a
list with every bolt connection, the patterns of those connections, the specified torque wrench loading
used to test the bolts, and the results from every bolt I had touched. I would know exactly which bolts I
had touched because each would be marked with fluorescent paint, both on my chart and on the steel.

Why should software testing be any different? I could certainly give my management a better answer
than it. Many of these better answers were around when the pyramids were being built. When I am
asked those questions today, my answer sounds something like this:

As per our agreement, we have tested 67 percent of the test inventory. The tests we ran
represent the most important tests in the inventory as determined by our joint risk analysis. The
bug find rates and the severity composition of the bugs we found were within the expected range.
Our bug fix rate is 85 percent.

It has been three weeks since we found a Severity 1 issue. There are currently no known
Severity 1 issues open. Fixes for the last Severity 2 issues were regression-tested and approved
a week ago. The testers have conducted some additional testing in a couple of the newer
modules. Overall, the system seems to be stable.

The load testing has been concluded. The system failed at 90 percent of the design load. The
system engineers believe they understand the problem, but they say they will need three months
to implement the fix. Projections say the peak load should only be at 75 percent by then. If the
actual loading goes above 90 percent, the system will fail.

Our recommendation is to ship on schedule, with the understanding that we have an exposure if
the system utilization exceeds the projections before we have a chance to install the previously
noted fix.

The thing that I find most amazing is that answers like these are not widely used in the industry today. I
regularly hear testers and developers using i t metrics. Throughout the 1990s I gave out a survey every
time I taught a testing course. Probably 60 percent of the students taking these courses were new to
testing, with less than one year as a tester. About 20 percent had from one to five years' experience,
and the remainder were expert testers. The survey asked the student to define common testing terms
like test, and it asked them to identify the methods and metrics that they regularly used as testers. The
complete results of these surveys are presented in the appendix of this book. I will mention some of the
highlights here.

The only type of metrics used regularly have to do with counting bugs and ranking them by
severity. Only a small percentage of respondents measure the bug find rate or the bug fix rate. No
other metrics are widely used in development or testing, even among the best-educated and
seemingly most competent testers. It can also be inferred from these results that the companies for
which these testers work do not have a tradition of measuring their software development or test
processes.

Few respondents reported using formal methods such as inspection or structured analysis,
meaning some documented structured or systematic method of analyzing the test needs of a
system. The most commonly cited reason for attending the seminar was to learn some software
testing methods.

The majority of testers taking the survey (76 percent) had had some experience with automated
test tools. Today an even greater percent of testers report that they have used automated test
tools, but test automation is also voted as the most difficult test technique to implement and
maintain in the test effort.

The respondents who are not actively testing provided the most accurate definitions of the testing
terms. The people performing the testing supplied the poorest definitions of the testing tasks that
they are performing most frequently.

Overall, I believe that the quality of the tester's level of awareness is improving, and, certainly, software
testing practices have improved in the commercial software development sector. Today there are more
publications, tools, and discussion groups available than there were 10 years ago. There are certainly
more shops attempting to use formal methods and testing tools. But the survey results haven't changed
much over the years.

How did we get to this mind-set? How did these limitations in perceptions-and, unfortunately, all too
often in practice-come about? To understand that, we need to examine the evolution of software
development and testing during the last two decades.
[1]Commercial software is software that is commercially available and can be purchased by the public.
This distinguishes it from safety-critical, proprietary, or military software.

A Quick Look at How We Got Where We Are

Most of the formal methods and metrics around today had their start back in the 1970s and 1980s
when industry began to use computers. Computer professionals of that time were scientists, usually
mathematicians and electrical engineers. Their ideas about how to conduct business were based on
older, established industries like manufacturing; civil projects like power plants; and military interests
like avionics and ballistics.

The 1980s: The Big Blue and Big Iron Ruled

By the 1980s, computers were widely used in industries that required lots of computation and data
processing. Software compilers were empowering a new generation of programmers to write machine-
specific programs.

In the 1980s computers were mainframes: big iron. Large corporations like IBM and Honeywell ruled
the day. These computers were expensive and long-lived. We expected software to last for five years,
and we expected hardware to last even longer-that is, how long it takes to depreciate the investment.
As a result, buying decisions were not made lightly. The investments involved were large ones, and
commitments were for the long term, so decisions were made only after careful consideration and
multiyear projections.

Fact: Computers in the 1980s: expensive, long-term commitment, lots of technical knowledge
required

Normally a vendor during the 1980s would sell hardware, software, support, education, and consulting.
A partnership-style relationship existed between the customer and the vendor. Once a vendor was
selected, the company was pretty much stuck with that company until the hardware and software were
depreciated; a process that could take 10 or more years.

These consumers demanded reliability and quality from their investment. Testing was an integral part of
this arrangement and contributed greatly to the quality of the product. Only a few vendors existed, and
each had its own proprietary way of doing things. Compared to today's numbers, only a few people
were developing and testing software, and most of them were engineers with degrees in engineering.

For the most part, during this period any given application or operating system only ran in one
environment. There were few situations where machines from more than one vendor were expected to
exchange information or interact in any way. This fact is very significant, since today's software is
expected to run in many different environments and every vendor's hardware is expected to integrate
with all sorts of devices in its environment.

The 1990s: PCs Begin to Bring Computing to "Every Desktop"

In the 1990s, the PC became ubiquitous, and with it came cheap software for the public consumer. All
through the 1990s, computers kept getting more powerful, faster, and cheaper. The chip makers
successfully upheld Moore's law, which states that the number of circuits on a single silicon chip
doubles every 18 to 24 months. To put that in perspective, in 1965 the most complex chip had 64
transistors. Intel's Pentium III, launched in October 2000, has 28 million transistors.

Fact: Computers in the 1990s: keep getting cheaper, no commitment involved, almost anybody
can play

The price of a PC continued to fall during the 1990s, even though their capabilities expanded
geometrically. The software developers were driven to exploit the bigger, better, and faster computers.
And the consumers were driven to upgrade, just to remain competitive in their business; or at least that
was the perception.

Software makers adopted rapid application development (RAD) techniques so that they could keep up
with the hardware and the consumers' demands in this new industry, where being first to market was
often the key to success. Development tools make it easier and easier for people to write programs.
So, a degree becomes less important.

Unlike the 1980s, when the "next" release would be a stronger version of the existing software, in the
1990s, a new version of a product was often significantly different from the previous version and often
contained more serious bugs than its predecessor.

Fact: What we got from rapid application development in the 1990s was a new product, complete
with new bugs, every 18 to 24 months.

The demanding delivery schedule left little time for testing the base functionality, let alone testing the
multiple environments where the product might be expected to run, such as computers made by
different vendors, and different versions of the operating system. So, it was mostly tested by the users,
with product support groups plugging the holes.

Who would have dreamt then how developments in software and the Internet would eventually affect
the state of software testing? The outcome proves that truth is stranger than fiction. Consider the
following note I wrote about software testing methods and metrics in 1995:

In the last couple of years, there has been a marked increase in interest in improved product
reliability by several successful shrink-wrap manufacturers. I had wondered for some time what
factors would cause a successful shrink-wrap marketing concern to become interested in
improving reliability. I used to think that it would be litigation brought on by product failures that
would force software makers to pay more attention to reliability. However, the standard
arguments for accountability and performance do not seem to have any significant effect on the
commercial software industry. It seems that the force driving reliability improvements is simple
economics and market maturity.

First, there is economics of scale. The cost of shipping the fix for a bug to several million
registered users is prohibitive at the moment. Second, there are the decreasing profit margins
brought on by competition. When profit margins become so slim that the profit from selling a copy
of the software is eaten up by the first call that a user makes to customer support, the balance
point between delivery, features, and reliability must change in order for the company to stay
profitable. The entrepreneurial company becomes suddenly interested in efficiency and reliability
in order to survive.

At the time, I honestly expected a renaissance in software testing. Unfortunately, this was the year that
the Internet began to get serious notice. It was also the year that I spent months speaking at several
large corporations telling everyone who would listen that they could radically reduce the cost of
customer support if they developed support Web sites that let the customers get the information and
fixes they needed for free, anytime, from anywhere, without a long wait to talk to someone. Somebody
was listening. I was probably not the only one broadcasting this message.

Enter: The Web

Within months, every major hardware and software vendor had a support presence on the Web. The
bug fix process became far more efficient because it was no longer necessary to ship fixes to everyone
who purchased the product-only those who noticed the problem came looking for a solution. Thanks to
the Internet, the cost of distributing a bug fix fell to almost nothing as more and more users downloaded
the fixes from the Web. The customer support Web site provided a single source of information and
updates for customers and customer service, and the time required to make a fix available to the users
shrank to insignificance.

The cost of implementing these support Web sites was very small and the savings were huge;
customer satisfaction and profit margins went up. I got a new job and a great job title: Manager of
Internet Technology. Management considered the result a major product quality improvement, but it
was not achieved through better test methods. In fact, this process improvement successfully
minimized any incentive for shipping cleaner products in the first place. Who knew? But don't despair,
because it was only a temporary reprieve.

The most important thing was getting important fixes to the users to keep them happy until the next
release. The Internet made it possible to do this. What we got from the Internet was quick relief from
the new bugs and a bad case of Pandora's box, spouting would-be entrepreneurs, developers, and
experts in unbelievable profusion.

Consumers base their product-buying decisions largely on availability and advertising. Consumers are
most likely to buy the first product on the market that offers features they want, not necessarily the most
reliable product. Generally, they have little or no information on software reliability because there is no
certification body for software. There is no true equivalent in the software industry to institutions like
Underwriters Laboratory (UL) in the United States, which certifies electronics products. Software
consumers can only read the reviews, choose the manufacturer, and hope for the best. Consequently,
software reliability has been squeezed as priorities have shifted toward delivery dates and appealing
functionality, and the cost of shipping fixes has plummeted-thanks to the Web.

Given this market profile, the PC software market is a fertile environment for entrepreneurs.
Competitive pressures are huge, and it is critically important to be the first to capture the market. The
decision to ship is generally based on market-driven dates, not the current reliability of the product. It
has become common practice to distribute bug-fix releases (put the patches and fixes on the Web site)
within a few weeks of the initial release-after the market has been captured. Consequently, reliability
metrics are not currently considered to be crucial to commercial success of the product. This trend in
commercial software exists to one degree or another throughout the industry. We also see this trend in
hardware development.

The next major contribution of the Web was to make it possible to download this "shrink-wrap" software
directly. This type of software typically has a low purchase price, offers a rich appealing set of
functionality, and is fairly volatile, with a new release being offered every 12 to 18 months. The
reliability of this software is low compared to the traditional commercial software of the 1970s and
1980s. But it has been a huge commercial success nonetheless. And the Web has helped keep this
status quo in effect by reducing the cost of shipping a bug fix by letting users with a problem download
the fix for themselves. And so we coasted through the 1990s.

The Current Financial Climate

In the aftermath of the dot-corn failures and the market slump in 2001 and 2002, investors are
demanding profitability. I always expected consumers to rebel against buggy software. What happened
was that investors rebelled against management gambling with their money. This change is inflicting
fiscal responsibility and accountability on management. It is not uncommon today to have the chief
financial officer (CFO) in charge of most undertakings of any size.

Fact: Nobody seems to feel lucky right now.

The first task is usually to cut costs, adjust the margins, and calm investors. Along with the CFO come
the auditors. It is their job to find out what the information technologies (IT) department is, what it does,
and if it is profitable or not. If it is not profitable, it will either become profitable, or it will be cut. The
financial managers are quick to target waste in all its forms.

Slowing Down

The 1990s were a time of rapid growth, experimentation, and great optimism. We were always eager to
buy the "next" version every time it became available, without considering if we really needed it or not.
It was sort of the I-feel-lucky approach to software procurement. We kept expecting "better" products,
even though what we got were "different" products. But we kept buying these products, so we
perpetuated the cycle. There always seemed to be a justification for buying the next upgrade. A new
term was coined-shelfware-to describe software that was purchased but never installed.

Further, even software that did get installed was rarely fully utilized. Studies showed that users rarely
used over 10 percent of the functionality of most common business software. There was obviously a
feature bloat.

Fat client/server applications were quickly replaced by lightweight, limited-function, browser-based
clients. Most users never missed the 90 percent of the functions that were gone, but they appreciated
the fast response, anytime, anywhere.

Getting More from What We Have

It seems that there is a limit to how small transistor etchings on a silicone wafer can get. To make
microchips, Intel and AMD etch a pattern of transistors onto a silicon wafer. But the more you cram

onto a chip, the smaller everything gets. Electrons carry the 0 and 1 information through the transistors
that power our current computers' computing capabilities. When the transistors get down to the atomic
level, electrons are too large to flow.

Fact: Many prognosticators believe that the dominance of Moore's law is coming to an end.

In addition, the cost of producing "Moore" complex chips is rising. As chips become more complex, the
cost to manufacture them increases. Intel and AMD now spend billions to create fabrication plants.

With silicon chips nearing the end of their feasibility, scientists and engineers are looking to the future
of the microprocessor. Chip makers are now focusing on the next generation of computing. But it is
going to be expensive to ramp up new technologies like DNA computers and molecular computers.

DNA computing is a field that will create ultra-dense systems that pack megabytes of information into
devices the size of a silicon transistor. A single bacterium cell is about the same size as a single silicon
transistor, but it holds more than a megabyte of DNA memory and it has all the computational
structures to sense and respond to its environment. DNA computers and molecular computers do not
use electrons and 0/1 bits. They can solve more complex problems faster than transistor-based
microchips because of the way in which they work. So, in the meantime, we will probably have the
chance to create some new uses for the technology that we have.

Fact: We are not buying.

Microsoft's corporate vision statement was "A PC on every desktop." They have come a long way
toward achieving this goal. However, the indications are that hardware prices won't fall much lower, and
even though the price of some software is going up, sales are falling.

When Microsoft introduced the Windows 2000 operating system, it failed to sell at the rate they had
expected; the climate had begun to change. In the following year, Microsoft Office XP, with its short-
sighted and inflexible licensing, also failed to gain acceptance. Most of us decided not to upgrade.

In the 1990s, developers successfully argued that investing in better tools would build a better product,
rather than investing in a better test process. Since most of the quality improvements in the past 10
years have come from standardization and development process improvements, they usually got what
they wanted.

However, the real product failures had to do with products that missed the mark on the functionality,
and applications that simply did not run well in large systems or systems that were so costly to maintain
that they lost money in production. These are things that development tools cannot fix. They are things
that testing can identify, and things that can be fixed and avoided.

In today's climate, the financial people will not allow that server from last year to be tossed out until it
has been fully depreciated. Neither will they approve the purchase of new operating systems nor office
software without a cost-benefit justification. Customers are not in the mood to go out and spend lots of
money upgrading their systems either.

Note Testers, here is our chance!

When consumers are not willing to buy a new product just because it's "new," things are starting to
change. When consumers demand reliability over features and cost, the quality balance shifts back
from trendy first-to-market toward reliability. The value of using formal methods and metrics becomes
the difference between the companies that survive and the ones that fail.

With so many groups competing for budget, the test group must be able to make a compelling
argument, or it will become extinct. A test manager who can make a good cost-benefit statement for the
financial folks has a chance. The bottom line for testers is that the test effort must add value to the
product. Testers must be able to demonstrate that value.

Note The way to develop a good cost-benefit statement, and add real credibility to software testing,
is to use formal methods and good metrics.

Regardless of the cause, once a software maker has decided to use formal methods, it must address
the question of which formal methods and metrics to adopt. Once methods or a course toward methods
has been determined, everyone must be educated in the new methods. Moving an established culture

from an informal method of doing something to a formal method of doing the same thing takes time,
determination, and a good cost-benefit ratio. It amounts to a cultural change, and introducing culture
changes is risky business. Once the new methods are established, it still takes a continuing
commitment from management to keep them alive and in use.

In ancient times this was accomplished by fiat, an order from the king. If there were any kings in the
1990s, they must have lived in development. Today, however, it is being accomplished by the CFO and
the auditors.

Guess What? The Best Methods Haven't Changed

The auditors are paid to ask hard questions. They want to know what i t is. The auditors are paying
attention to the answers. And, since the financial folks use a very stringent set of formal methods in
their work, they expect others to do the same.

What the Auditors Want to Know from the Testers

When testing a product the auditors want to know:

What does the software or system do?

What are you going to do to prove that it works?

What are your test results? Did it work under the required environment? Or, did you have to tweak
it?

Clearly, the test methods used need to answer these questions. Before we try to determine the best
methods and metrics to use to ensure that proper, thorough testing takes place, we need to examine
the challenges faced by testers today.

The Challenges a Tester Faces Today

The position and contribution of a tester has been severely eroded since I joined testing in 1987. The
average tester today is facing quite a few challenges. Many are new to testing, many are experienced
testers facing poor budgets, and many are facing a "testers don't get no respect" climate that is
dominated by ship date pressures, where testers can easily be seen as a problem rather than a part of
the solution. Sadly, this is true both for testers in commercial software development and for testers in
the more traditionally formal areas such as business and safety-critical and high-reliability software.

No Specification Means No Testing

The first problem in making a convincing case for software testing today is that no one can test without
a specification. In software development, the word test is even more misunderstood than the word
quality.

Note To test means to compare an actual result to a standard.

If there is no standard to compare against, there can be no test. In the survey discussed earlier, only
one person in 50 provided the correct definition for the word test. In shops where some form of RAD is
in use, people think they are testing. However, since specifications are produced after the software is
finished, testing is an impossibility. This is also true for most of the RAD descendants: the Agile
methodologies; eXtreme Programming (XP), Lean Development (LD), Adaptive Software Development
(ASD), and so on. The one possible exception to this situation is the Dynamic Systems Development
Method (DSDM). We will discuss the RAD/Agile methodologies and how to accomplish testing them in
more detail in the next chapters.[2]

The Institute of Electrical and Electronics Engineers (IEEE) defines test as "a set of one or more test
cases." The IEEE defines testing as "the process of analyzing a software item to detect the differences
between existing and required conditions [that is, bugs] and to evaluate the features of the software
item." This definition invites the tester to go beyond comparing the actualities to a standard
(verification) and evaluate the software (validation). Effectively, the definition invites testers to express
opinions without giving them guidelines for the formulation of those opinions or tools (metrics) to defend
those opinions. The IEEE definition makes testers responsible for both verification and validation
without distinction. This practice, when pursued energetically, is more likely to incite riot among
developers than it is to lead to quality improvements. To understand what I am getting at, consider the
definitions of the words verification and validation.

According to Webster's New World Dictionary, verify means "(1) to prove to be true by demonstration,
evidence, or testimony; confirm or substantiate; (2) to test or check the accuracy or correctness of, as
by investigation, comparison with a standard or reference to the facts." Verification is basically the
same process as testing with a bias toward correctness, as in, "to verify that a thing performs according
to specification." Verification answers the question "Does the system do what it's supposed to do?"

Webster's New World Dictionary defines validity as "the state, quality, or fact of being valid (strong,
powerful, properly executed) in law or in argument, proof or citation of authority." Validation is the
process by which we confirm that a thing is properly executed. Validation requires a subjective
judgment on the part of the tester. Such a judgment must be defended by argument, for example, "I
think it's a bug because" Validation answers the question "Is what the system doing correct?" Just
because a system was designed to do things a certain way and is doing those things in that way does
not mean that the way things are being done is the right way or the best way.

Comparing the system's response to the standard is straightforward when there is a specification that
states what the correct system response will be. The fundamental problem with testing in a RAD/Agile
environment is that, since there are generally no standards, it is impossible to test. RAD/Agile testers
are exploring the software and performing bug finding and validation on the fly. To convince
development that something is invalid when there are no standards to quote, one must have a
convincing argument and high professional credibility. How much chance does a tester have of
convincing development that something is invalid or seriously wrong if they are using i t metrics and the
best argument they can give is "I think i t is a bug because I think i t is a bug."?

Also, it is virtually impossible to automate testing if there is no standard for the expected response. An
automated test program cannot make on-the-fly subjective judgments about the correctness of the
outcome. It must have a standard expected response to compare with the actual response in order to
make a pass/fail determination.

Being First to Market: Market/Entrepreneurial Pressures Not to
Test

In our entrepreneur-driven first-to-market development environment, managers are eager to cut any
costs or activities that don't add to the bottom line. They are also eager to remove any barriers that
might negatively impact a ship date. Testing has not demonstrated that it is a requirement for success
in the shipped product.

The fact is, it has not been necessary to use formal software test methods or metrics in many parts of
commercial software development in order to succeed commercially. This type of software that I call
commercial software is intended for business and home consumption, generally on the PC platform;
hopefully, it is not used in safety-critical systems. This is software that anyone can buy at a store or
over the Internet, like word processors, graphics programs, and spreadsheets.

Common reasons given for not using formal test methods are usually of the form, "We don't need
formal methods. We are just a small shop." The general conception seems to be that formal methods
have to be written by somebody else and that they must be specialized and complicated. Formal simply
means following a set of prescribed or fixed procedures. The real problem here is the lack of really
productive testing. It is a cultural problem.

Testing is perceived to be a cost center-not a contributor to the bottom line. So in some shops the
perception is that testing doesn't add much value to the product. If it doesn't add much value, it won't
get much funding.

Since most commercial test efforts are typically underfunded and staffed with warm bodies rather than
trained testers, mediocre test results are the norm, and so over the past years, I have seen more and
more companies disbanding the software test group altogether.

The Lack of Trained Testers

One of my first mentors when I started testing software systems had been a tester in a boom-able[3]

industry for many years. He explained to me early on how a very good analyst could get promoted to
programmer after about five years of reviewing code and writing design specifications; then after about
five years in development, the very best programmers could hope for a promotion into the system test
group. The first two years in the system test group were spent learning how to test the system.

This situation still exists in some safety-critical shops, but it is not the norm in commercial software
shops at all. The simple fact is that few testers or developers have received any training in formal
methods, especially test techniques. Dorothy Graham, a noted author in the field of test inspection and
tester certification, estimated in the late 1990s that only 10 percent of testers and developers had ever
had any training in test techniques. The results of the survey I mentioned earlier support this assertion.

Where do software testers get their training? In the United States, software testers are homegrown, for
the most part. The bulk of test training available in North America comes through public and private
seminars.

In Europe, a larger percentage of students attending the test seminars have science or engineering
degrees than attendees from the United States, but, again, the bulk of software test training is done in
public and private seminars. Few metrics are in use even among the better-educated testers.

Few universities offer software testing classes. Even fewer require software testing classes as part of
the software engineering curriculum. Unfortunately, this sends the message to business and the
development community that software testing is not worthwhile.

Academia is largely uninvolved with the actual business of producing commercial software. Software
testing is not the only topic that is missing from the curriculum. Cellular communications, digital video
editing, and multimedia development represent other omissions. University instructors are busy

teaching well-established subjects and exploring future technologies. Few institutions cover the ground
that serves the current needs of industry, such as training the next generation of professional testers.

Traditionally, in the United States, test groups were staffed with computer science graduates looking for
entry-level programming positions. But since 1990, we have seen the number of testers with any type
of science degree dwindle. People currently being hired to perform testing do not come from a tradition
of experimental practice or science or engineering because the entrepreneurs see no need to pay for
such people to fill testing positions. This trend is reinforced by the focus on market demands rather
than product reliability. Even if the need for these skills were recognized, few formally trained testers
would be available.

In the 1990s, finding information on many testing topics was difficult to do. Few college courses were
available on software testing, and only a few conferences were devoted to the subject. Since the
advent of the Internet, this situation has changed dramatically. The Internet has made it possible for
testers to find a great deal of information on software testing easily. If you enter "Software+Testing" on
your favorite Internet search engine today, you are likely to get hundreds of thousands of matches. But
these improvements have not improved the overall status of the software tester or the test effort.

I don't think that there is one simple answer for this situation. The situation is a result of several factors.
One contributor to the current situation is that in most companies, testing is not a respected career; it is
a phase. Most testers are transients-they are moving though testing to get to something else. For
example, it's common for nontechnical personnel or just-out-of-school computer scientists to use a stint
in the test group to bridge themselves into a job in operations or development. So, they don't stay in
testing.

The poor funding that test groups routinely get today also contributes to it being a phase rather than a
career. There aren't enough resources for education (especially the time necessary to go and take a
class). Management must consider the questions "Why educate testers if they are just going to move
on to other careers?" and "Why spend money on a test effort that probably won't be very good?"

Testing lacks the credibility that it once had. So, as the knowledge level of testers is reduced to i t
metrics and ad hoc methods, the quality of the test effort is reduced. The fact is, the real quality
improvements in commercial software are coming about because of the Internet and the international
acceptance of standards. Let me explain.

Standards Reduce the Amount of Testing Required

Fact: Quality improvements in the 1990s have been driven by standardization, not testing or
quality assurance.

I already mentioned how the Web allowed software makers to cut support costs and get bug fixes to
users quickly and efficiently, instead of spending more to remove bugs in the first place. Another kind of
improvement that has caused testing to be less important is the rapid adoption of standards in our large
systems.

When I wrote my first paper on system integration in 1989, I described integrating the system as
building a rock wall with my bare hands out of a mismatched combination of oddly shaped stones,
wires, and mud. The finished product required operators standing by in the data center, 24/7, ready to
stick a thumb or a monkey wrench into any holes that appeared.

Each vendor had its own proprietary thing: link library, transport protocol, data structure, database
language, whatever. There were no standards for how various systems would interoperate. In fact, I'm
not sure that the term interoperate existed in the early 1990s. For example, when we created online
banking at Prodigy, we wanted our IBM system to "talk" to the Tandem at the bank. We had to invent
our own headers and write our own black boxes to translate IBM messages to Tandem and vice versa.
All the code was new and rightfully untrustworthy. It had to be tested mercilessly.

System modules were written in machine-specific languages; each machine had its own operating
system. The modems and routers had their own manufacturer-specific ways of doing things. A
message could be broken down and reconstructed a dozen times between the application that built it
and the client on the other side of the modem receiving it. Testing a system required that each
component be tested with the full knowledge that something as simple as a text string might be handled

differently by each successive element in the network.

Integrating applications into the networks of that day required major-league testing. During my first two
years as a systems integrator, my best friend and only tool was my line monitor. I actually got to the
point where I could read binary message headers as they came across the modem.

We have come a long way in the intervening years. I am not saying that all manufacturers have
suddenly agreed to give up their internal proprietary protocols, structures, and ways of doing things-
they have not. But eventually, it all runs down to the sea, or in our case, the Internet, and the Internet is
based on standards: IP, HTML, XML, and so on. This means that, sooner or later, everyone has to
convert their proprietary "thing" to a standards-based "thing" so that they can do business on the Web.
(See the sidebar on standards that have improved software and systems.)

Because of standardization, a lot of the more technical testing chores are no longer necessary, like me
and my line monitor. This has also contributed to management hiring fewer senior technical testers and
more entry-level nontechnical testers. The rise of fast-paced RAD/Agile development methods that
don't produce a specification that the tester can test against has also eliminated many testing chores.

Obviously, there is great room for improvement in the software testing environment. Testing is often
insufficient and frequently nonexistent. But valuable software testing can take place, even in the
constraints (and seeming chaos) of the present market, and the test effort can and should add value
and quality to the product. Our next chapter examines that very topic.

Some of the Standards That Have Improved Software and Systems

Several standards are in use today that support e-business interoperability. They are used to
enable interoperability to put information flows into a form that can be processed by another
component in the system, between various business services, applications, and legacy systems.
Open Buying on the Internet (OBI), cXML, and XML/EDI are a few of the most popular business-to-
business (B2B) standards in use today. BizTalk, another standardized offering, is a framework of
interoperability specifications. BizTalk applications support information flows and workflows
between companies, allowing rules to be created that govern how flows from one process are
translated, stored, and otherwise manipulated before being sent on to the next component in the
flow.

With the adoption of XML, it is now possible to host a Web service on an intranet or the Internet. A
Web service is simply an application that lives on the Web and is available to any client that can
contract with it. It represents a "standardized" version of an application that can be located,
contracted, and utilized (Microsoft calls this "consuming" the Web service) dynamically via the
Web.

In the near future we will find that we don't know where our information is coming from as our
applications automatically and transparently reach out and query universal description discovery
and integration (UDDI) servers anywhere on the planet to locate and contract with Internet-hosted
Web services to do X, Y, and Z as part of the application.

Today, bringing up an e-commerce application does not require a line monitor. Nor does it require
the exhaustive testing that was required before the Web. Applications have a higher reliability from
the beginning because they are based on standards. Typically, availability of a Web-based system
is measured in 9s, with 99.999 percent availability being the norm for a commercial system. That
translates to less than 8 hours downtime each year.

What we can do, how we can interoperate, and how reliable our systems are has improved
enormously as a result of our adoption of the Internet and its standards.

DEVELOPMENT TOOLS ALSO SUPPORT STANDARDS

Our development tools have gotten a lot better as well. For example, the .NET development API,
Visual Studio .NET, can be set up to enforce design and coding standard and policies on
developers through the use of templates. These templates can be customized at the enterprise
level. They can impose significant structure on the development process, limit what programmers
can do, and require that they do certain things, such as the following:

Always use the company-approved name for a specific feature.

Always use a certain data structure to hold a certain kind of information.

Always use a certain form to gather a certain kind of information.

Submit a program module only after every required action has been completed on it, such as
providing all the tool tips and help messages.

When this template approach is applied to an enterprise, it eliminates entire classes of bugs from
the finished product.

Installation is a matter of copying compiled files to a directory and invoking the executable.
Programs do need to be registered with the system where they are running. The .NET framework
contains a standardized application execution manager that controls just-in-time (JIT) compilation
and application loading into managed memory. A memory manager ensures that programs run in
their own space, and only in their space.

The .NET framework is based on a set of unified libraries that are used by all languages. The result
of these features is that all programs are using the same set of link libraries, regardless of what
language they were written in. Consequently, if a library routine is tested in one module, it can be
assumed that it will behave the same way when used by any other module. A string, for example,
will always be treated in the same way instead of each different language compiler bringing with it
its own set of link libraries to the system, complete with their own different bugs.

Programmers can write in the language that fits the job at hand and their skill set. The end product
will perform the same no matter which language it was written in, because all languages are
compiled into a standardized binary file that uses the unified library routines and runs in its own
protected memory space.

This architecture is very similar to the one run at Prodigy in 1987 using IBM's Transaction
Processing Facility (TPF) operating system and Prodigy's own object-oriented language and
common code libraries. It worked very reliably then, and it will probably work very reliably now as
well.

[2]I will refer to all the RAD descendants as RAD/Agile efforts for simplicity.

[3]So-called "boom-able" because if something goes wrong, something goes "boom."

Summary

Software testing today seems to have four main problems.

First, changes in the way that software is developed have eroded the value of software testing. New
development methodologies are developed iteratively through trial and error. These methods typically
don't produce specifications for the tester to test against, so testers are left to hunt for bugs.

Second, in recent years, software development has been driven by entrepreneurial pressures,
schedule, and constantly evolving product definition. For these and other reasons, management is not
always convinced that testing is necessary or worthwhile. In many types of development effort, testing
by an independent test group is not believed to be worthwhile or to add value.

Third, there are few trained testers using formal methods and metrics, and most of the software testers
out there are just passing through testing on their way to some other (more promising and rewarding)
career. As a result, the test effort is not producing the kind of high-quality results that help demonstrate
how the test effort improves the quality of the product and the bottom line.

Finally, the most important, and visible, software quality improvements in the past several years have
not come as a result of testing, but of standardization driven by the Internet. This increased use of
standards has had a profound effect on the quality of the final product and on the ability of multiple
software systems to interact and interoperate. It has also removed the need for extensive low-level
testing in these areas, so the demand for senior technical testers is decreasing.

In the end it comes down to the question "Does your test effort add enough value to make it
worthwhile?" It used to be assumed that the answer to this question was yes. Today, however, this is
not true. A test effort that just finds bugs is not enough. Testers must be able to demonstrate that their
effort is adding value to the bottom line. There are many ways to measure that value, but you have to
be measuring all along in order to demonstrate the value added. Managers and auditors, and just about
anyone looking at the bottom line, expect to see a real, measurable demonstration that every part of
the development of a product is contributing. This book shows you many ways to show this value. In
the next chapter, we discuss some of the problems with traditional quality assurance in today's software
development environment.

Chapter 2: Maintaining Quality Assurance in
Today's Software Testing Environment

Overview

The quality assurance person said, "You are not following the process in the quality manual. We
worked hard to write these procedures and you are changing it in the middle of the project. You can't do
that."

The developer answered, "I am not changing the process; I am automating the process you published
in the quality manual."

"But you are changing it," the quality assurance person insisted.

The developer took a deep breath and tried again, "I'm not changing it; I'm putting it online. See, this
electronic form is exactly like your paper checklist form except it's online. This way we can all see it and
it is really easy to fill out. No more wondering what happened to it, whose desk it's stuck on. Most of the
information is already filled in by the system." The developer beamed. Certainly the quality assurance
person would finally understand.

"No, you are changing it," repeated the quality assurance person. "The way you are doing it is not
what's described in the quality manual. You just can't do it now."

"But why? We already know this automation will save about 40 person hours and 3,000 pages of paper
each week. It will pay for itself in about eight weeks." The developer was becoming exasperated.

"Yes, that may be, but we would have to get together and rework the whole process. Then we'd have to
change the quality manual, get it approved, redistribute it, call in all the old copies. You have no idea
how much is involved. We are in the middle of the delivery schedule.

"No, you will have to wait until the next release. We just do not have time right now," concluded the
quality assurance person.

What's Wrong with This Picture?

Before anyone gets offended, I want to say that I have found myself on both sides of this debate. What
people perceive to be wrong with this picture will depend largely on the type of development process
they are following. In a carefully planned and controlled development effort, quality assurance would
win and the innovation would be held up until it could be fit into the schedule. In a RAD/Agile shop, a
dynamic creative process will not be stifled simply because it is difficult and inconvenient to update
paper documentation. In a RAD/Agile shop, the innovation would most likely be put in place as quickly
as it is available, and the quality assurance procedure that cannot keep up with technology and
innovation is likely to be discarded.

For the past several years, I have hosted special collaborative Web sites that provide features such as
single-source documentation, proactive notification to subscribers of changes, interactive discussions
and live chats, task lists, and schedules with automatic reminders and notifications. I have trained
several teams on how to use these Web sites to minimize the problems described here and to mediate
disagreements. However, even after training, these same problems persist, even when updates are
instant and notification is automatic. These problems are caused by our culture, and culture is difficult
to change. Even though the technology exists to solve the problem, or at least improve the situation, it
will not succeed unless the culture can be changed.

To determine how to achieve and maintain proper quality assurance, now and in the future, we need to
evaluate what's lacking in the current quality assurance environment. The following section looks at
some common, faulty perceptions of what quality assurance is and then examines six faulty
assumptions of what quality is and how it should be measured with respect to software systems.

Problems with Traditional Quality Assurance

Let's consider the traditional definition of quality assurance. The following definition is taken from the
British Standard, BS 4778:

Quality Assurance: All those planned and systematic actions necessary to provide adequate
confidence that a product or service will satisfy given requirements for quality.

Testers and managers need to be sure that all activities of the test effort are adequate and properly
executed. The body of knowledge, or set of methods and practices used to accomplish these goals, is
quality assurance. Quality assurance is responsible for ensuring the quality of the product. Software
testing is one of the tools used to ascertain the quality of software. In many organizations, the testers
are also responsible for quality assurance-that is, ensuring the quality of the software. In the United
States, few software development companies have full-time staff devoted to quality assurance. The
reason for this lack of dedicated staff is simple. In most cases, traditional formal quality assurance is
not a cost-effective way to add value to the product.

A 1995 report by Capers Jones, "Software Quality for 1995: What Works and What Doesn't," for
Software Productivity Research, gives the performance of the four most common defect removal
practices in the industry today: formal design and code inspections, formal quality assurance, and
formal testing. The efficiency of bug removal for these methods used individually is as follows:

Formal design inspections 45%-68%

Formal software testing 37%-60%

Formal quality assurance 32%-55%

No formal methods at all 30%-50%

When taken in combination:

Formal design inspections and formal code inspections 70%-90%

The best combination:

Formal design inspections, formal quality assurance, formal testing 77%-95%

When used alone, formal quality assurance does only 5 percent better than no formal methods at all. It
is not possible to determine its relative worth when used in combination with other methods. However, it
can be argued that considering the following problems, the contribution of formal quality assurance is
minimal.

Traditional Definitions of Quality That Are Not Applicable

Quality assurance defines quality as "the totality of features or characteristics of a product or service
that bear on its ability to satisfy stated or implied needs." The British Standards 4778, and ISO 8402,
from the International Standards Organization (ISO), definitions cite "fitness for purpose" and
"conformance with requirements."

Quality is not a thing; it is the measure of a thing. Quality is a metric. The thing that quality measures is
excellence. How much excellence does a thing possess? Excellence is the fact or condition of
excelling; of superiority; surpassing goodness or merit.

The problem is that the methods put forward by the experts of the 1980s for achieving quality didn't
work in the real market-driven world of the 1990s and probably won't be particularly useful for most
commercial software makers in the coming decade. For example, Philip B. Crosby is probably best
remembered for his book, Quality Is Free (Mentor Books, 1992). In it he describes in nontechnical
terms his methods for installing, maintaining, and measuring a comprehensive quality improvement
program in your business. The major emphasis is on doing things right the first time. Crosby maintains
that this quality is free and that what costs dearly is the rework that you must do when you don't do it
right at the get-go.

According to Mr. Crosby's teachings:

The definition of quality is "conformance with requirements."

The system for achieving quality is "prevention, not cure."

The measure of success is "the cost of quality."

The target goal of the quality process is "Zero defects-get it right the first time."

These concepts are most certainly laudable, but they require a very high level of discipline and maturity
to carry out. The fact is that this set of concepts doesn't fit the commercial software development
process. The reason for this is that the assumptions that they are based on are inaccurate in today's
software development process. This situation is especially true in an environment where no one has
ever gone before, and so no one knows what "right the first time" means.

Metaphorically speaking, the folks writing the definitions of quality and the procedures for achieving it
were all from some major department store, but the market demand was going toward volume discount
pricing. At the time of this writing, Wal-Mart is the dominant player in this field. Wal-Mart developed its
own definitions for quality and invented its own methods for achieving it. It did its own market research
and tailored its services to meet the actual (real) needs of that market. It didn't just leave it to the
designers to guess. The other major point of distinction is Wal-Mart's overwhelming commitment to
customer satisfaction. This sets it apart from most commercial software makers. Notice that there is
nothing about customer satisfaction in Mr. Crosby's points. By the way, Wal-Mart is bigger than
Microsoft.

Fact: If all you have is a hammer, then everything looks like a nail.

Get the right tool for the job. Overplanning and underplanning the product are two of the main failings in
software development efforts today. While a safety-critical or high-reliability effort will fail if it is
underplanned, in today's market, it will also fail if it falls into the trap of overplanning-trying to build too
good a product for the technology environment and the market. The entrepreneurs are more concerned
with planning to make money. They are not going to be bogged down by cumbersome quality
assurance procedures that might give them only a marginal improvement.

So, on one end of the spectrum, we have the PC-based commercial software developers who have
successfully marketed all manner of semifunctional and sometimes reliable products, and on the other
end, we have the high-reliability and safety-critical software developers who must always provide
reliable, functioning products. Over the years, consumers have come to expect the price and rapid
release schedule of the entrepreneurial commercial software systems. The real problem started when
they began to demand the same pricing and release/update schedule from the high-reliability folks.
Mature companies like Boeing and Honeywell have faced a terrible challenge to their existence
because they must maintain best-practice quality assurance and compete with the shrink-wrappers at
the same time.

Some sobering thoughts ... I found it a truly terrifying experience when I realized that the software
monitoring system I was testing on the Microsoft Windows platform would be monitoring critical
systems in a nuclear power plant. This was the same operating system that would let my fellow testers
lock up the entire air defense system network of a small but strategic country by moving the mouse
back and forth too fast on an operator console. These are only a couple of examples of the types of
compromises software developers and the market are making these days.

Some Faulty Assumptions

Formal quality assurance principles are based on a number of precepts that are not a good fit for the
realities of commercial software development today. The following six precepts are among the most
prevalent-and erroneous-in the field today.

Fallacy 1: Quality Requirements Dictate the Schedule

The Facts:

For most software systems, market forces and competition dictate the schedule.

Traditional development models cannot keep up with the demand for consumer software products or
the rapidly changing technology that supports them. Today's rich development environment and ready
consumer market has sparked the imagination of an enormous number of entrepreneurs.
Consequently, this market is incredibly competitive and volatile. Product delivery schedules are often
based on a first-to-market strategy. This strategy is well expressed in this 1997 quote from Roger
Sherman, director of testing at Microsoft Corporation:

Schedule is often thought to be the enemy of quality, but at Microsoft it is considered to be part of
the quality of the product.

(Microsoft studied their market and made their own definitions of quality based on the needs of that
market.) Most software developed in RAD/Agile shops has a life expectancy of 3 to 12 months. The
technology it services-PCs, digitizers, fax/modems, video systems, and so on-generally turns over
every 12 months. The maximum desirable life expectancy of a current hardware/software system in the
commercial domain is between 18 and 24 months. In contrast, traditional quality assurance principles
are geared for products with a design life expectancy measured in decades.

Fallacy 2: Quality = Reliability

This equation is interpreted as "zero defects is a requirement for a high-quality product."

The Facts:

Reliability is only one component of the quality of a product.

The commercial software market (with a few exceptions) is not willing to pay for a zero-defect product
or a 100 percent reliable product.

Users don't care about faults that don't ever become bugs, and users will forgive most bugs if they can
work around them, especially if the features are great and if the price is right. For example, in many
business network environments in 1994 and 1995, users religiously saved their work before trying to
print it. The reason: About one in four print jobs submitted to a certain type of printer using a particular
software printer driver would lock up the user's workstation and result in the loss of any unsaved work.
Even though many thousands of users were affected, the bug was tolerated for many months because
the effects could be limited to simply rebooting the user's workstation occasionally.

Safety-critical and mission-critical applications are the notable exceptions to this fact. Consumers are
willing to pay for reliability when the consequences of a failure are potentially lethal. However, the
makers of these critical software systems are faced with the same market pressures from competition
and constantly changing technology as the consumer software makers.

Fallacy 3: Users Know What They Want

The Facts:

User expectations are vague and general, not detailed and feature-specific. This situation is
especially true for business software products. This phenomenon has led to something that we call
feature bloat.

For example, if you asked several banking customers if they would like to be able to pay their bills
online, many would say yes. But that response does not help the designer determine what type of bills
customers will want to pay or how much they will use any particular type of payment feature.
Consequently, in a well-funded development project, it is common to see every conceivable feature
being implemented.

I once ported a client server application to the Web that produced 250 different reports on demand.
When I researched the actual customer usage statistics to determine which reports were the most
requested and therefore the most important to implement first, I discovered that only 30 of these 250
reports had ever been requested. But each one had been implemented to satisfy a customer request.

Fallacy 4: The Requirements Will Be Correct

This fallacy assumes that designers can produce what the users want the first time, without actually
building product or going through trial-and-error cycles.

The Facts:

Designers are commonly asked to design products using technology that is brand new and poorly
understood. They are routinely asked to guess how the users will use the product, and they design
the logic flow and interface based on those guesses.

Designers are people, and people evolve good designs through trial-and-error experimentation.
Good requirements also evolve during development through trial-and-error experimentation. They
are not written whole at the outset. A development process that does not allow sufficient time for
design, test, and fix cycles will fail to produce the right product.

Fallacy 5: Users Will Accept a Boring Product if the Features and Reliability
Are Good

The Facts:

To make an excellent product, we must consistently meet or exceed user expectations. For
example, text-based Web browsers in cell phones have failed to captivate the consumer (up till
now), even though they provide fast and efficient use of the slow data transmission rates inherent
in the current cellular networks.

Software must be innovative in order to compete. The software leads the users to new
accomplishments. Some examples of competitive innovations in the home consumer market
include digital video editing, 3D animation, imaging, and video conferencing.

As corollaries of the preceding facts, the software must provide a competitive advantage to the
business user and it must educate users.

For example, let's consider color and graphics. DOS, with its simple black-and-green appearance on
screen, was very reliable compared to the first several Windows operating systems, yet it passed away
and became extinct.

Color printers have come to dominate the printer world in only a few short years. The cost to purchase
one may be low, but the life expectancy is short. The cost of ownership is high (color ink is very
expensive), yet they have become the status quo, successfully supplanting the tried-and-true, fast,
reliable, and economical black-and-white laser printer.

Third Generation (3G) cell phones don't have 3G networks to support them yet in the United States, yet
because of their brilliant color displays, their ability to use picture screen savers, and their ability to play
tunes, they are outselling excellent 2G cell phones that offer superior feature sets that work reliably in
today's cellular networks.

Fallacy 6: Product Maturity Is Required

The Facts:

Product maturity has little to do with the consumer's buying decision. Price and availability are far
more important considerations in most business scenarios.

The very mature premier high-end digital video creation software system has been supplanted by two
new software editing systems that provide about 10 percent of the features it does, at 10 percent of the
price. In addition, the new systems can be purchased and downloaded over the Internet, whereas the
premier system cannot. We are also seeing this trend in large system software. The typical scenario
involves dropping a massive, entrenched, expensive client/server system and replacing it with a
lightweight, Web-based, database-driven application.

This relates also to Fallacy 3: Users know what they want. When analysis is performed on the current
system, a frequent discovery is that the customers are paying for lots of features they are not using.

Once the correct feature set has been determined, it can often be implemented quickly in a new Web-
based application-where it can run very inexpensively.

Feature maturity is a far more important consideration than product maturity. As I have already pointed
out, most consumers have realized that the "latest release" of software is not necessarily more reliable
than the previous release. So product maturity is most often a myth. A mature product or system is
typically overburdened by feature bloat.

What's Not Working: The Traditional Tools for Controlling Quality

So, now I have pointed out some of the problems associated with the ideas underlying what quality
assurance is. But how do we control quality and bring about effective testing to ensure effective
products and services? To determine that answer, we need to examine some of the tools used by
traditional quality assurance people and see where there is room for improvement.

What, then, is quality control? The British Standard 4778 defines quality control as "the operational
techniques and activities that are used to fulfill requirements for quality."

We try to control quality and defects in software by instituting processes to control design, coding,
testing, delivery, and so forth. The idea is that if we standardize the process by which something is
done, we can establish repeatability in the process and reliable uniformity in the product of the process.
Further, we can automate a standardized process, eliminating the need to have people participate in it
at all. People are nonuniform by nature. Process is a good tool for minimizing the impact of
(nonuniform) people on a project. But, when all is said and done, software is written by people to be
used by people. It is this fact that may ultimately be our salvation even though it is proving to be a
challenge during this time of transition.

Software development is a creative, innovative process. Quality assurance principles were developed
for manufacturing, which is based on repeatability and is rarely innovative. Traditional quality assurance
principles are a poor fit for the needs of today's fast-paced software development environment.

Traditional quality assurance principles equate quality primarily with reliability. This definition is too
simplistic for today's market, which means that the priorities of traditional quality assurance are out of
synch with the needs of the software development community.

Manufacturing has not been excessively concerned with human factors. Manufacturing was founded in
an environment where the largest asset was machinery, where repetitive mechanical processes could
be institutionalized by managerial decree, and where the role of people was to service the process.

In entrepreneurial software shops, the largest asset is the people and the intellectual property that they
generate. Only a process that is accepted by the people doing the work will succeed. And only a
process that treats people as assets will be accepted.

Traditional QA and Testing Tools Can't Keep Up

The following are traditional tools used by quality assurance and software testers:

Records. Documentation that keeps track of events, answering the questions when, where, who,
how, and why.

Documents. Standards, quality plan, test plan, process statements, policy.

Activities. Reviews, change management, version control, testing.

These are primarily paper-dependent tools. Most traditional quality assurance tools rely on paper. It is
virtually impossible to perform work that is more precise than the tools used to create the work. How
can quality assurance and test groups be expected to be more effective than their best tools?

The Paper Problem

Paper is the biggest single impediment to software quality today. It is no coincidence that document
inspection and reviews are the most effective ways to take bugs out of our software. Inspections and
reviews test the paper documentation. Paper documentation is the single biggest bug repository in
software development. In addition to the number of design errors, mis-communications, ambiguities,
and fallacies we introduce and entrench in our products, the number of errors introduced by outdated or
discrepant paper documentation is a major quality problem. Furthermore, the creation and compilation
of paper documents is expensive and slow.

The main problem with traditional quality control in RAD is that the productivity-enhancing tools used by
software developers have far outdistanced the paper-producing tools used by quality assurance
groups, testers, and documentation groups. The development of software proceeds at a pace that is
faster by several orders of magnitude than the knowledge transfer, composition, layout, and review of
paper documentation. The result is paper-producing groups not keeping up with the pace of
development.

The distribution of information through paper documents is expensive and slow. Paper documentation
is typically at least somewhat out-of-date by the time it is printed. When we need to distribute
information to more people, we make more paper copies. When we need to update information, we
must make enough copies to replace all existing earlier versions and try to distribute these new paper
copies to everyone who had a copy of the earlier version. This is a manual version control process. It
cannot hope to keep all distributed information fresh.

In the time it takes to explain the paper problem, I can make major changes in the functionality of a
software application, recompile it, and have it ready for testing. The paper documentation is now out-of-
date.

In general, development takes hours to build a release, but change management needs days to
approve the release and the testers need weeks to test it. Meanwhile, the design changes daily, and
documentation simply cannot keep up.

Solution: Improving the Quality Process

To improve a quality process, you need to examine your technology environment (hardware, networks,
protocols, standards) and your market, and develop definitions for quality that suit them. First of all,
quality is only achieved when you have balance-that is, the right proportions of the correct ingredients.

Note Quality is getting the right balance between timeliness, price, features, reliability, and support
to achieve customer satisfaction.

Picking the Correct Components for Quality in Your Environment

The following are my definitions of the fundamental components that should be the goals of quality
assurance.

The definition of quality is customer satisfaction.

The system for achieving quality is constant refinement.

The measure of quality is the profit.

The target goal of the quality process is a hit every time.

Note Quality can be quantified most effectively by measuring customer satisfaction.

My formula for achieving these goals is:

Be first to market with the product.

Ask the right price.

Get the right features in it-the required stuff and some flashy stuff that will really please the users.

Keep the unacceptable bugs to an absolute minimum. Corollary: Make sure your bugs are less
expensive and less irritating than your competitor's bugs.

As far as I am concerned, this is a formula for creating an excellent product.

A Change in the Balance

Historically, as a market matures, the importance of being the first to market will diminish and reliability
will become more important. Indications show that this already happening in some cutting-edge
industries. For example, I just completed a study of 3G communications devices in the Pacific Rim.
Apparently, the first-to-market service provider captures the early adopter-in this case, young people,
students, and professionals. However, the higher volume sales of hardware and services go to the
provider who can capture the second wave of buyers. This second wave is made up of members of the
general public who need time to evaluate the new offerings. The early adopters serve to educate the
general public. Further, the second wave of buyers is non-technical and they are not as tolerant of bugs
in the system as the early adopters.

Elimination by Market Forces of Competitors Who Fail to Provide Sufficient
Quality

The developers and testers who are suffering the most from the problems of outdated and inefficient
quality assurance practices are the software makers who must provide high reliability. A market-driven
RAD shop is likely to use only the quality assurance practices that suit their in-house process and
ignore the rest. This is true because a 5 percent increase in reliability is not worth a missed delivery
date. Even though the makers of firmware, safety-critical software, and other high-reliability systems
are feeling the same pressures to get their product to market, they cannot afford to abandon quality
assurance practices.

A student said to me recently, "We make avionics. We test everything, every time. When we find a bug,
we fix it, every time, no matter how long it takes." The only way these makers can remain competitive

without compromising reliability is by improving, optimizing, and automating their development
processes and their quality assurance and control processes.

Clearly, we must control quality. We must encourage and reward invention, and we must be quick to
incorporate improvements. What we are looking for is a set of efficient methods, metrics, and tools that
strike a balance between controlling process and creating product.

Picking the Correct Quality Control Tools for Your Environment

Earlier I mentioned the traditional tools used by quality assurance to ensure that quality is achieved in
the product: records, documents, and activities (such as testing). Improving these tools is a good place
to start if you are going to try and improve your quality process. We need all of these tools; it is just a
matter of making them efficient and doable.

I also talked about the failings and challenges associated with using paper in our development and
quality processes. And, in Chapter 1, I talked about the fact that trained testers using solid methods
and metrics are in short supply. In this section, I want to talk about some of the techniques I have used
to improve these three critical quality assurance tools.

Automating Record Keeping

We certainly need to keep records, and we need to write down our plans, but we can't spend time doing
it. The records must be generated automatically as a part of our development and quality process. The
records that tell us who, what, where, when, and how should not require special effort to create, and
they should be maintained automatically every time something is changed.

The most important (read: cost-effective) test automation I have developed in the last four years has
not been preparing automated test scripts. It has been automating the documentation process, via the
inventory, and test management by instituting online forms and a single-source repository for all test
documentation and process tracking.

I built my first test project Web site in 1996. It proved to be such a useful tool that the company kept it
in service for years after the product was shipped. It was used by the support groups to manage
customer issues, internal training, and upgrades to the product for several years.

This automation of online document repositories for test plans, scripts, scheduling, bug reporting,
shared information, task lists, and discussions has been so successful that it has taken on a life of its
own as a set of project management tools that enable instant collaboration amongst team members, no
matter where they are located.

Today, collaboration is becoming a common theme as more and more development efforts begin to use
the Agile methodologies. [1] I will talk more about this methodology in Chapter 3, "Approaches to
Managing Software Testing." Collaborative Web sites are beginning to be used in project management
and intranet sites to support this type of effort.

I have built many collaborative Web sites over the years; some were more useful than others, but they
eliminated whole classes of errors, because there were a single source for all documentation,
schedules, and tasks that was accessible to the entire team.

Web sites of this type can do a lot to automate our records, improve communications, and speed the
processing of updates. This objective is accomplished through the use of team user profiles, role-based
security, dynamic forms and proactive notification, and messaging features. Task lists, online
discussions, announcements, and subscription-based messaging can automatically send emails to
subscribers when events occur.

Several vendors are offering Web sites and application software that perform these functions. I use
Microsoft SharePoint Team Services to perform these tasks today. It comes free with Microsoft Office
XP, so it is available to most corporate testing projects. There are many names for a Web site that
performs these types of tasks; I prefer to call such a Web site a collaborative site.

Improving Documentation Techniques

Documentation techniques can be improved in two ways. First, you can improve the way documents

are created and maintained by automating the handling of changes in a single-source environment.
Second, you can improve the way the design is created and maintained by using visualization and
graphics instead of verbiage to describe systems and features. A graphical visualization of a product or
system can be much easier to understand, review, update, and maintain than a written description of
the system.

Improving the Way Documents Are Created, Reviewed, and Maintained

We can greatly improve the creation, review, and approval process for documents if they are (1) kept in
a single-source repository and (2) reviewed by the entire team with all comments being collected and
merged automatically into a single document. Thousands of hours of quality assurance process time
can be saved by using a collaborative environment with these capabilities.

For example, in one project that I managed in 2001, the first phase of the project used a traditional
process of distributing the design documents via email and paper, collecting comments and then rolling
all the comments back into a single new version. Thirty people reviewed the documents. Then, it took a
team of five documentation specialists 1,000 hours to roll all the comments into the new version of the
documentation.

At this point I instituted a Microsoft SharePoint Team Services collaborative Web site, which took 2
hours to create and 16 hours to write the instructions to the reviewers and train the team to use the site.
One document specialist was assigned as the permanent support role on the site to answer questions
and reset passwords. The next revision of the documents included twice as many reviewers, and only
200 hours were spent rolling the comments into the next version of the documentation. Total time
savings for processing the reviewers' comments was about 700 hours.

The whole concept of having to call in old documents and redistribute new copies in a project of any
size is so wasteful that an automated Web-based system can usually pay for itself in the first revision
cycle.

Improving the Way Systems Are Described: Replacing Words with Pictures

Modeling tools are being used to replace descriptive commentary documentation in several industries.
For example, BizTalk is an international standard that defines an environment for interorganizational
workflows that support electronic commerce and supply-chain integration. As an example of document
simplification, consider the illustration in Figure 2.1. It shows the interaction of a business-to-business
automated procurement system implemented by the two companies. Arrows denote the flow of data
among roles and entities.

Figure 2.1: Business-to-business automated procurement system between two companies.

Microsoft's BizTalk server allows business analysts and programmers to design the flow of B2B data

using the graphical user interface of Visio (a drawing program). They actually draw the process flow for
the data and workflows. This drawing represents a business process. In BizTalk Orchestration
Designer, once a drawing is complete, it can be compiled and run as an XLANG schedule. XLANG is
part of the BizTalk standard. This process of drawing the system is called orchestration. Once the
annalist has created this visual design document, the programmer simply wires up the application logic
by attaching programs to the various nodes in the graphical design image.

Figure 2.2 shows the movement of the documents through the buyer and seller systems as created in
the orchestration process. It also shows the interaction between the XLANG schedule, BizTalk
Messaging Services, and the auxiliary components.

Figure 2.2: The movement of documents through the system.

Fact: One picture (like Figure 2.2) is better than thousands of words of commentary-style
documentation and costs far less to create and maintain.

It can take anywhere from 15 to 30 pages of commentary to adequately describe this process. Yet this
graphic does it in one page. This type of flow mapping is far more efficient than describing the process
in a commentary. It is also far more maintainable. And, as you will see when we discuss logic flow
maps in Chapters 11 and 12, this type of flow can be used to generate the tests required to validate the
system during the test effort.

Visualization techniques create systems that are self-documenting. I advocate using this type of visual
approach to describing systems at every opportunity. As I said in Chapter 1, the most significant
improvements in software quality have not been made through testing or quality assurance, but through
the application of standards.

Trained Testers Using Methods and Metrics That Work

Finally, we have the quality assurance tool for measuring the quality of the software product: testing.

In many organizations, the testers are limited to providing information based on the results of
verification and validation. This is a sad under-use of a valuable resource. This thinking is partly a
holdover from the traditional manufacturing-based quality assurance problems. This traditional thinking
assumes that the designers can produce what the users want the first time, all by themselves. The
other part of the problem is the perception that testers don't produce anything-except possibly bugs.

It has been said that "you can't test the bugs out." This is true. Test means to verify-to compare an
actuality to a standard. It doesn't say anything about taking any fixative action. However, enough of the
right bugs must be removed during, or as a result of, the test effort, or the test effort will be judged a
failure.

Note In reality, the tester's product is the delivered system, the code written by the developers
minus the bugs (that the testers persuaded development to remove) plus the innovations and
enhancements suggested through actual use (that testers persuaded developers to add).

The test effort is the process by which testers produce their product.

The quality of the tools that they use in the test effort has a direct effect on the outcome of the quality of
the process. A good method isn't going to help the bottom line if the tools needed to support it are not
available.

The methods and metrics that the testers use during the test effort should be ones that add value to the
final product. The testers should be allowed to choose the tools they need to support the methods and
metrics that they are using.

Once the system is turned over to test, the testers should own it. After all, the act of turning the code
over for testing states implicitly that the developers have put everything into it that they currently believe
should be there, for that moment at least, and that it is ready to be reviewed.

As I observed in Chapter 1, there is a shortage of trained testers, and practicing software testers are
not noted for using formal methods and metrics. Improving the tools used by untrained testers will not
have as big a benefit as training the testers and giving them the tools that they need to succeed.
[1]The Agile Software Development Manifesto, by the AgileAlliance, February 2001, at
www.agilemanifesto.org.

Summary

Traditional quality assurance principles are not a good fit for today's software projects. Further, the
traditional processes by which we ensure quality in software systems is cumbersome and inflexible.
Even more important, the traditional tools used by quality assurance are not able to keep up with the
pace of software development today. Testers constrained to follow these outmoded practices using
these cumbersome tools are doomed to failure.

The quality process must be reinvented to fit the real needs of the development process. The process
by which we ensure quality in a product must be improved. A company needs to write its own quality
goals and create a process for ensuring that they are met. The process needs to be flexible, and it
needs to take advantage of the tools that exist today.

Several new technologies exist that can be used to support quality assurance principles, such as
collaboration, which allows all involved parties to contribute and communicate as the design and
implementation evolve. These technologies can also help make quality assurance faster and more
efficient by replacing traditional paper documentation, distribution, and review processes with instantly
available single-source electronic documents, and by supplementing written descriptions with drawings.

Replacing tradition requires a culture change. And, people must change their way of working to include
new tools. Changing a culture is difficult. Historically, successful cultures simply absorb new invading
cultures, adopt the new ideas that work, and get on with life. Cultures that resist the invasion must
spend resources to do so, and so become distracted from the main business at hand.

Software quality is a combination of reliability, timeliness to market, price/cost, and the feature
richness. The test effort must exist in balance with these other factors. Testers need tools-that is,
methods and metrics that can keep up with development-and testers need the knowledge to use those
tools.

Traditionally, testing has been a tool to measure the quality of the product. Today, testing needs to be
able to do more than just measure; it needs to be able to add to the value of the product. In the next
chapters, we discuss various approaches to testing and some fundamental methods and metrics that
are used throughout the rest of the book.

Chapter 3: Approaches to Managing Software
Testing

Many major hotels in Las Vegas, Nevada, offer gaming schools as a free service to their patrons. The
first lesson that they teach in gaming school goes something like this: The instructor takes great pains
to point out the red velvet wall coverings, the crystal chandeliers, and all the rich appointments that
surround you in the casino. Then they tell you, "Look around. See all the money that built Las Vegas?
Always remember, the losers built Las Vegas. They played their hunches. They are the ones that felt
lucky."

The I-Feel-Lucky Approach to Software Development

The gaming school teaches students to resist the "I feel lucky" impulse and use methods instead. They
show you how to figure out if your hand of cards is more likely to win than someone else's and how to
calculate odds of certain combinations of numbers showing up on a pair of dice. The methods taught in
gaming school are based on simple counting techniques and probability. They are very similar to the
methods taught in this book.

If you have any doubts about the results of using methods versus the I-feel-lucky approach, consider
that today most casinos are populated exclusively by computer-driven games-not cards or dice. This
system is in place because there are no counting techniques that can be used to successfully calculate
or predict the odds of winning in computer gaming. Only a very knowledgeable hacker or someone with
inside information has a chance of winning more than they invest with electronic gaming. Clearly, the
financial thinkers at the casinos saw the power of good methods and moved to circumvent them.

If management does not have a method that has demonstrated value, they will take their best guess
instead. If the product succeeds, management will believe in their winning streak and continue to play
their hunches. Generally, no one is much interested in trying a formal method-until this luck runs out
and the winning streak breaks. If you want to prove that in the long run a method works better than
luck, you have to measure how well each actually performs.

Note Methods and metrics must provide demonstrable value to have credibility and worth.

As I said in Chapter 1, currently few people feel lucky, and we (testers) once again have a good chance
to prove our worth. But what should that look like? How does a tester make a case for methods with a
manager who does not believe that he or she needs to test? The best way I know is to provide that
manager with high-quality information that he or she can use to make decisions that have a positive
affect on the bottom line.

To do that you will have to develop an approach to testing that complements (and can succeed with)
the development methodology being used. You will have to measure and keep track of what you
measure, and finally, you will have to convert your measurement data into that information that
management finds truly valuable. And that's what this book is about.

Another way that you can demonstrate the value of methods and metrics is to measure the cost benefit
of not using the methods and metrics and compare that to the cost benefit of using them.

For example, in a case study of an early-1990s shrink-wrap RAD project that I reported in 1994, a
group of trained testers, using the methods and metrics in this book, found bugs at the rate of two to
three per hour, while untrained testers, who were not using formal methods and metrics, found three
bugs per day in the same applications. Further, over 90 percent of the bugs reported by the trained
testers were fixed, while half of the bugs reported by the untrained testers were returned by developers
as unreproducible.

In this study the trained testers were paid a wage that was almost double that of the untrained testers.
Even at double the pay it cost an average of $13 for the trained testers to find a bug, while it cost an
average of $50 for the untrained testers to find the same bug. Even when the cost of test education is
taken into account, the testers using methods and metrics are far more efficient. These are facts that
will motivate management to consider trying the methods and metrics used by the trained testers.

The best reason for using methods and metrics is that companies using them have a competitive
advantage. They get a much better job done for less.

I firmly believe that a competent journeyman tester (the ones using methods and metrics) can
successfully test any development project regardless of the development methodology being employed
as long as they have sufficient resources and management support to do so. Developing or tailoring the
test approach to suit the needs of the project is a critical piece of acquiring those resources and that
support.

Before we examine the current approaches to testing in the field and the approaches you should take,
let's examine some myths about testing and the approaches to testing. What are some of the
widespread, usually erroneous assumptions about the approaches we should take to testing?

Some Myths about Art, Science, and Software

One of the most destructive myths in the industry is that somehow science and art are mutually
exclusive, that scientists and engineers cannot think creatively and that artists cannot or should not be
educated to be competent in measurement or science because it would hurt their creativity.

As previously noted, feature richness is a major component of the perceived quality of a software
product. A rich set of features requires a creative and innovative approach to design. This requirement
has led to an infusion of artistic talent into the software development process. Typically, this artistic
talent lacks foundation training in science or engineering. Even worse, the Internet opened the door for
absolutely anyone to put up a Web site and claim to be a professional-anything.

Myths about Art

Art means to join or fit together. It is commonly defined as follows:

The human ability to make things; creativity of human beings as distinguished from the world of
nature.

1.

Skill; craftsmanship.2.

Any specific skill or its application, for example, the art of making friends.3.

Any craft, trade, or profession or its principles.4.

Creative work or its principles; such as making things in a manner that displays form, beauty,
and unusual perception: art includes painting, sculpture, architecture, music, literature, drama,
dance, etc.

5.

The quality of being artful or cunning.6.

The quality of being sly or cunning; tricky; wily.7.

The infusion of artistic talent into software development has undoubtedly improved features. It has also
caused serious quality degradation in the software development process. One of the most popular
myths in the software development community is that only artists are creative and that artists cannot be
creative if they are constrained to follow rules.

I spent 25 years in the performing arts, and I am an artist as well as an engineer. No one drills harder
on fundamentals than an artist. Musicians, dancers, painters, singers, and writers all practice for hours
each day for many years to build something called technique. The depth and quality of an artist's
technique is the measure of that individual's mastery of his or her discipline. An artist cannot be
competitive without great technique. Because of my own experience with art and science, I am very
wary of the person who claims to be an artist but whines about following a disciplined approach. This
person is not likely to be a competent artist.

Myths about Science

Scientific methods grow out of a body of factual knowledge, not out of myth and supposition. The term
science refers to a body of knowledge that is a body of models and generalizations that organizes and
correlates observed facts. The purpose of gathering these facts is to make predictions. These
predictions are then tested by comparing them to actual observations or experiments.

An accepted scientific conceptual scheme is usually called a theory. A theory is never proved. A theory
is considered to be a valid model of reality if it correlates well with a considerable body of facts and if no
one disproves it by finding a fact that contradicts its predictions. There is always the chance that the
best-established theory will be disproved by someone who can show its predictions to be in error. At
this point the theory will have to be revised, corrected, refined, or abandoned.

Science starts by systematically recording facts. These facts should be accurate, well defined, and
quantitative. The scientist tries to order and correlate these facts. The product of this process is usually
a working hypothesis that is capable of prediction. A working hypothesis is provisional. It is meant to

guide further investigation and is subject to constant change and refinement. A hypothesis is
incorporated into scientific theory only when it has been empirically verified in many ways. Any
hypothesis is abandoned or revised if its predictions are contradicted by observation.

When a scientist publishes a new idea, it is called an invention or innovation. Invent means to come
upon, meet, or discover. This definition includes (1) to think up; devise or fabricate in the mind such as
to invent excuses; and (2) to think out or produce, such as a new device, process, etc.; or to originate,
as by experiment; or devise for the first time. According to Webster's New World Dictionary, innovate
means to renew, or to alter, to introduce new methods or devices to bring in as an innovation. These
definitions certainly sound like creativity.

Myths about Software

The popular myth is that the artist just throws a bunch of stuff together and comes up with a miracle of
creation. This is not to say that the scientist cannot be creative, ingenious, or inventive, nor that the
artist is undisciplined and cannot keep good records. But that is the myth. If you are inventing
something new, you use a process called experimentation. In commercial software, we call this process
developing a new product. How the experiment is conducted or the development process works is what
separates the scientists from the artists.

While the artist is likely to rush right in and begin following her or his creative intuition, the scientist
begins by performing background research and formulating an approach to conducting the experiment.
The scientist keeps careful records of the steps in the process, the assumptions, the ingredients used,
and their quantities and the outcome.

Pure art is good at one-of-a-kind things and limited editions. Creation is about taking risks to try new
and different things. Success is capricious. Uniformity and reproducibility are not the hallmark of art.
Most of an artist's career goes into trying to find the spotlight-fabulous painting, hit song, best-selling
book, or whatever. In the commercial world we need reproducible miracles. The next release of the
software should be even better than the current release; art makes no guarantees.

For example, let's consider cookies. Great software and great cookies have a lot in common. They both
evolve through a process. A business needs not only to develop a good cookie but it also needs to be
able to make as many of these cookies as the market demands. In addition, everyone who buys a
cookie wants a good cookie, so the cookies must be consistently good, batch after batch. The maker
needs to be able to make lots of good cookies time after time without unpleasant surprises. It is
generally not worthwhile for a business to create one batch of fabulous cookies if it cannot ever
reproduce them for sale in the future.

The artist may invent a truly marvelous cookie, but there is no guarantee that it can be reproduced with
the same quality. The cookie invented by the scientist may not be so marvelous, but it will most
probably be reproducible with consistent quality.

Additionally, artists tend to ignore requirements that do not agree with their artistic sensibilities. So, it is
not unusual for the marvelous cookie that the artist created to be a poor fit for the cookie-buying
market. While it is true that a scientist's creativity may be inhibited by his or her knowledge of the facts,
the artist's creation can be crippled by ignorance of the facts.

Fact: What is required is a balance between creativity and method. This is where engineers
come into the picture.

The Engineering Approach

It seems that people's perception of software engineers is based on programmers, who are regularly
called software engineers. However, programmers might not be engineers, they might not act like
engineers, and they might not conduct business as engineers do. The traditional branches of
engineering-civil, mechanical, electrical, chemical-have a licensing process that engineers must go
through to become professional engineers. This process helps ensure that an acceptable level of
knowledge and competence exists in the profession. There is no such certification in software
engineering.

According to Webster's New World Dictionary, engineering is "(a) the science concerned with putting
scientific knowledge to practical uses... (b) the planning, designing, construction, or management of
machinery, roads, bridges, buildings, etc. (c) the act of maneuvering or managing...."

Engineers are scientists who apply science to solve problems. We are the practical folks in the sweaty
hats. There is art in the definition of engineering also.

Notice the reference in the dictionary definition to management. Management is, according to
Webster's New World Dictionary, "the act, art, or manner of managing, or handling, controlling,
directing"

The practice of engineering is applied science (application of the bodies of knowledge of the various
natural sciences), supplemented as necessary by art (know-how built up and handed down from past
experience).

The know-how built up and handed down from past experience is also called engineering practice. In
civil engineering, engineering practice refers to a body of knowledge, methods, and rules of thumb that
consist of accepted techniques for solving problems and conducting business.

Accountability and Performance

The reason for the existence of this body of knowledge, engineering practice, is that engineers are
accountable. If a structure fails, the engineer is the one who is probably going to be held responsible.

Nobody knows everything, and mistakes will happen despite the best preparation possible. Engineers
must show that they performed their duties according to the best of their abilities in accordance with
accepted standards. This is called performance. The engineer's defense will be based on
demonstrating that he or she followed acceptable engineering practice.

Engineering practice has some fundamental rules that are of particular interest and value to software
engineers and testers:

State the methods followed and why.

State your assumptions.

Apply adequate factors of safety.

Always get a second opinion.

Each of these rules is described in the paragraphs that follow.

Stating the Methods Followed and Why

The International Standards Organization's ISO 9001/EN quality management and quality assurance
standards are famous for demanding that software developers "say what they do, and do what they
say." But this is only one of the rules that engineers must follow in order to justify and defend what they
did or what they intend to do. Most of the content of this book is the "say what I do" part of this
requirement. In civil engineering, it is more a case of "say what you do and prove you did it."

Scientific method uses measurements to establish fact, so a discussion of engineering methods would
not be complete without a discussion of the metrics used to support the methods. I will formally

introduce the metrics used to support the test methods in this book in the next two chapters.

Stating Your Assumptions

No one knows everything or has all the answers. To solve problems in the absence of a complete set of
facts, we make assumptions. Assumptions are frequently wrong. The way to mitigate the effects of
incorrect assumptions is to publish all assumptions for as wide a review as possible. This increases the
chances that someone will spot an incorrect assumption and refute or correct it. If an engineer makes
an incorrect assumption but publishes it along with all the other assumptions about the project, if no
one challenges or refutes this assumption, the engineer will have a defensible position in the event of a
failure. The engineer performed in an acceptable and professional manner.

Our software systems have become so complex that no one can accurately predict all the ramifications
of making a change to one. What we do not know for sure, we assume to be this way or that.
Assumptions need to be made to fill in the gaps between the known facts. And those assumptions need
to be published so that others have the opportunity to refute them and to plan for them. For example, a
common assumption is that the test system will be available 100 percent of the time during the test
effort. If the system goes down, or if there are resource problems because other groups need access,
the loss of system availability can cause a significant impact on the test schedule.

How to Recognize Assumptions

Learning to recognize assumptions takes time and practice. We make assumptions constantly. It takes
a conscious effort to try to identify them. The technique I use to recognize an assumption is to first try
and identify all the things that I am depending on, and then to put the words "it is assumed that" in front
of all those dependencies. If the dependency statement sounds more reasonable with the assumption
clause, it goes in the test agreement as an assumption. For example, the statement "The test system
will behave as it has in the past" becomes "It is assumed that the test system will behave as it has in
the past." System support personnel can then confirm or modify this statement during review of the test
agreement. When considered in this way, it becomes clear very quickly just how much we take for
granted-like the existence of gravity.

One of the most frightening mistakes I ever made in estimating a test effort was to assume that "bugs
found during testing would be fixed within published [previously agreed upon] turnaround times so that
testing could continue." For example, a showstopper would be fixed as fast as possible, meaning within
hours, and a serious bug would be fixed in a day.

Unbeknownst to the test group, the development manager dictated that "developers would finish writing
all the code before they fixed any bugs." The bug fixes necessary for testing to continue never
materialized. The developers never really finish writing code, so they never fixed any bugs. All my test
agreements now state this assumption explicitly.

Types of Assumptions

The following are some examples of typical assumptions for a software test effort.

Assumption: Scope and Type of Testing

The test effort will conduct system, integration, and function testing.

All unit testing will be conducted by development.

Assumption: Environments That Will Be Tested

The environments defined in the requirements are the only environments that the test effort will be
responsible for verifying and validating.

Environment State(s)

All operating system software will be installed before testing is begun.

System Behavior

The system is stable.

The system will behave in the same way it has in the past.

System Requirements and Specifications

The system requirements and specifications are complete and up-to-date.

Test Environment Availability

The test environment will accurately model the real-world environment.

The test environment will be available at all times for the duration of the test effort.

Bug Fixes

Bugs found during testing will be fixed within published turnaround times according to priority.

Apply Adequate Factors of Safety

We have already discussed that we use methods and take measurements in order to make predictions.
A factor of safety is a metric. It is the measure of how far wrong a past prediction was, applied to a
current prediction to make it more accurate or safe. Engineers adjust their predictions to cope with this
reality by applying factors of safety. We will discuss this metric now because it is part of engineering
practice in general, rather than software testing in particular.

Demands placed on a design can extend far beyond the original purpose. The engineer is accountable
for the integrity of the product. Even if the product is put to uses that were never imagined, there is still
a performance requirement. When an engineer designs a bridge, every component and every design
specification has a factor of safety applied to it. Say, for example, that the design specification states,
"the bridge will be able to carry the load of tractor trailers, all loaded to capacity, parked end-to-end on
the bridge deck, during a flood." The engineer would calculate all the loads produced by all those trucks
and the flood, and she or he would then multiply that load by a factor of safety, generally 2, and design
the bridge to hold double the original required load. This is why bridges very seldom collapse even
though they must survive all manner of loads that were never anticipated by the engineer who designed
them. I have seen people drive across bridges when the floodwaters were so high that the bridge was
completely under water, even though common sense dictates that such a situation is very risky.

Factors of safety are not widely used in commercial software development. If a network architect has a
requirement for a switch that can handle 49 simultaneous transactions, the network architect will likely
buy the switch that is advertised as capable of handling 50 simultaneous transactions. That same
architect will be surprised when the switch fails in real-time operation as the load approaches 40
simultaneous transactions. The reason the system failed is important. But from a reliability standpoint,
the failure could have been avoided if a factor of safety had been included in the system design.

In safety-critical software, factors of safety are more commonly implemented using redundant and fault-
tolerant systems rather than by expanding design capacity.

How to Determine a Factor of Safety

In this book we use factors of safety primarily in the test estimation process to help get an accurate
time line for the test effort. In most branches of engineering, there are established values for factors of
safety for many applications. I am not aware of any established factors of safety in software
engineering test estimation. The only project management approach commonly used in software
development is to allow a few "slack days" in the schedule to absorb overruns and unforeseen events. I
disagree with this practice because it is often arbitrary; the time is not budgeted where it will be needed
in the schedule, and the amount of time allotted has nothing to do with the real risks in the project.

Factors of safety should be determined based on the error in the previous estimation and then adjusted
as needed. Even if a process does not use measurements to arrive at an estimate, a factor of safety
can be established for future similar estimates. For example, a test effort was estimated to require 14
weeks. In reality, 21 weeks were required to complete the test effort. The estimate was low by a factor
of:

21/14 = 1.5

When the next test estimation effort takes place, if the same or similar methods are used to make the
estimate, even if it is based on an I-feel-lucky guess, multiply the new estimate by a factor of 1.5, and
you will get an estimate that has been adjusted to be in keeping with reality.

Not all factors of safety are determined analytically. One of my favorite managers was a software
development manager whom I worked with for three years at Prodigy. He took every project estimate I
gave him and multiplied my estimate by his own factor of safety. While it was normally between 1.5 and
2, it was sometimes as high as 3.5. His estimates were always right, and our projects were always
completed on time and on or under budget. Eventually I asked Gary how he knew the correct factor of
safety and if he used the same factor on everyone's estimates. He told me that each person needed
her or his own individual factor of safety. Gary noted that the adjustments he applied to estimates were
not based on calculation but on his experience. In my case, he was correcting for the fact that I tended
to push myself harder than he liked in order to meet deadlines and that as a manager he had
information about project dependencies that I did not.

Note It does not matter how a factor of safety is determined; using them improves estimates.

No one knows everything, and no method is perfect. There is no shame in producing an estimate that is
initially inaccurate, only in knowingly leaving it unadjusted. Recognizing deficiencies and correcting for
them before they can become problems is the goal. Factors of safety adjust estimates to accommodate
unknowns.

It has been my experience that management in software houses resists factors of safety. They want to
hear a shorter time estimate, not a longer time estimate. I have had good success persuading
management to use factors of safety by consistently calculating the adjusted time and making it visible.
It is my job to supply the information that management uses to make decisions. If management
chooses to ignore my recommendations, that is their prerogative. If management selects the shorter
time and if we fail to meet it, I only need to point out the adjusted time estimate to make my point. Over
time, I have convinced many managers that a more accurate estimate is preferable even if it is less
palatable.

Always Get a Second Opinion

No good reason exists for working without a safety net. Inspection and formal reviews are the most
productive way to remove defects that we know of today. Part of the reason is that inspectors bring an
outside perspective to the process, so the rest is simple human factors. My first testing mentor,
Lawrence, pointed out that inspection and review works because people who do not know anything
about the project are likely to find a lot of mistakes missed by people in the project. In addition, these
techniques owe much of their success to the fact that it is human nature that when you are expecting
company, you generally clean the house before they come over.

Having someone to check your work is very important. If you cannot get anyone to check your work,
publish the fact clearly in print. This disclaimer not only protects you, but it warns those reading your
work.

The Adversarial Approach versus the Team Approach

When I joined my first software project in 1985, testers worked in isolated autonomous groups separate
from the development groups, and the two groups communicated mostly in writing. It was normal for
the relationship between developers and software testers to become adversarial from time to time.
Boris Beizer and Glenford Myers (and lots of others), experts in software testing at the time, wrote
about this fact. Dr. Beizer even dedicated a chapter in one of his books to how test managers can
defend and protect their testers.

Another characteristic of the time was the way the value of a test was measured. In his wonderful book,
The Art of Software Testing, Glenford Myers writes, "A good test is one which finds bugs." While I
agree there is merit in this thought, it suggests that a test that does not find bugs does not tell us
anything useful, and that is not true. The goal of finding bugs is important, but when it becomes the sole
focus of a test effort, it creates a negative imbalance in the perspective of the project personnel such
that only the negative aspects of a software system are valued by the testers. This tight focus on the
negative aspects of a software system is sure to cause resentment on the part of development, which
can lead to an adversarial relationship.

This idea that the only valuable test is one that finds a bug was a product of the time. At that time, most
software testing was conducted by engineers, or people with a science background. Testing in the
traditional engineering disciplines is conducted by stressing a component until it breaks. The expected
outcome is always failure. In materials testing, for instance, a newly designed steel beam is placed in a
machine that will apply various loads to the beam. The tester uses very precise instruments to measure
the reaction of the beam to each load. The load is increased until ultimately the beam fails. The actual
load at which the beam failed is compared to the theoretical ultimate loading for the beam. The ideal
situation is that the calculated ultimate load agrees closely with the actual ultimate load. This means
that the predicted ultimate load was correct. Concurrence between actual and predicted behavior gives
the engineers increased confidence that the other predicted behaviors of the beam will correlate closely
with its actual behavior in the real world.

The traditional engineering approach to testing is not always a good fit with the needs of software
testing. While some parts of the software environment can be tested to an ultimate load-for instance,
the maximum number of bytes per second that can be transmitted in a certain communications
environment-the concept is meaningless for most software modules. A software module is not like a
steel beam. With the level of sophistication that exists in today's software systems, the software module
should never fail.

The best correlation for a load failure in software is data boundary testing, which is probably why it is
the most productive test technique used today. But even if a data value falls outside the expected
range, the software should still process it as an exception or error. As software systems become more
and more robust, it becomes harder and harder to force a load failure. Where a tester used to be able
to cause telephone calls to be dropped by overloading a telephone switching computer with too many
simultaneous calls, now in most situations, the callers whose calls cannot be routed immediately hear
an announcement to that effect.

Normally my goal as a tester is not to "break the product." My goal is to perform verification and
validation on the product. My job isn't just to test, to verify that it does what it is supposed to do; an
automation tool can be trained to do that. I must also determine if it's doing the right things in the right
way.

Judging the merit of something must be accomplished by weighing its positive aspects against its
negative aspects. When testers get too intent on finding bugs, they can lose track of how well the
system works as a whole. They can lose sight of the goal of satisfying and delighting the customer. I
have seen too many test efforts that found lots of bugs but never tested the real-life scenarios that
mattered to the customers, where the testers didn't even know what those scenarios were.

I don't agree with the people who say that human testers will try to "not find bugs." Every tester I know
loves to find bugs; we relish them. We show them off to each other: "Hey wanna see something really
cool? I can make the display monitor turn into lots of little flashing squares!" The real issue is how we
handle the communications about those bugs between testers and developers and between developers
and testers.

The adversarial approach that promotes aggressive behavior does not provide satisfactory results in
today's mixed male, female, and multicultural work place. A team approach does provide good results
while maintaining good morale in the workplace. After all, we are all on the same team; our real
adversaries are the bugs.

Persuasion is an art. One of the chief tools of persuasion is argument. The word argument has a
negative connotation, being linked to confrontation and adversarial situations, but it is part of the
definition of the word validation. The answer to the question "Does the product do the right thing?"
requires subjective judgment. Persuasion will be accomplished by argument. The quality of the tester's
argument is determined by how successful it is in convincing others of its merit. The best case or most
convincing argument is made through objective measurements, but measurements alone are not
always sufficient to make a successful argument.

The Eclectic Approach to Integration and Testing: Balancing Art
and Engineering

When I examined the methods that I use that work well when organizing and carrying out a test effort, I
found that I was relying on communications skills that I learned as a dancer and ballet mistress rather
than the formal approach that I learned as an engineer. When I am planning and reporting, I use tools
and methods from engineering.

Dance is not communicated through written documents but by an older form of communication; dance
is communicated by an oral tradition. This contrasts sharply with engineers and musicians, who
communicate via written documents, but it correlates closely with the current requirements of software
development. I mention musicians because there are a significant number of musicians in software
development.

An oral tradition has the advantage that there is no time lost in recording instructions on another
medium, and the disadvantage that there is no permanent record of what transpired and everyone must
remain in close proximity to be kept informed. Large projects cannot be controlled using oral
communications alone; neither can projects with team members who are spread out in disparate
locations. Recording instructions and design specifics in writing takes time, but it allows ideas to be
communicated to many people in remote locations.

Dancers absorb and memorize new material through a combination of oral, aural, and visual input.
Virtually every movement that the dancer makes is set by the choreographer. Dancers rarely perform
ad lib. Each movement is supposed to be performed on a specific beat in some precise location and
spatial orientation on the stage. This is doubly true for members of the corpse de ballet, who must
perform as a single unit, with each individual dancer precisely in synch with all the others. The dancers
must execute complex coordinated movements precisely, time after time, on the beat, and in the
correct place on the stage, down to the tilt of the head and the angle and alignment of their fingers. It is
within this very demanding and precise framework that a dancer applies his or her art to make that
particular rendition of the dance exceptional and memorable. A group of testers with these
characteristics is definitely in a position to do an excellent job of testing a system.

Dancers are competent professionals when they are hired. When a new production is scheduled,
everyone is given a part, usually one that is well suited to her or his abilities. The main difference
between the ballet and the software business is that in ballet, everyone expects to be taught the part
that they will perform in each new production. In business, the expectation is that somehow everyone
will know his or her part. My friend Bill says, "Everyone wants to learn, but no one wants to be taught."
In business this seems to be true. But it doesn't solve the problem of how to transfer knowledge to new
players in a new production and get them working together.

I have had success coping with these difficulties in business by building teams. In a team environment,
every member's work is visible; if someone is not keeping up, the situation can be examined and
solutions can be proposed. The biggest problems arise when individuals become isolated and their
work has low visibility. Today, these precepts are considered an integral part of managing a
collaborative development effort.

The ballet mistress or master is responsible for rehearsing the company, spotting and correcting any
problems, and tuning the whole company to give their best performance. If some part of the production
is not working, it is the ballet mistress or master who takes the issue to the choreographer. To be able
to do this job, the ballet mistress or master must attend every single choreography session and
rehearsal. If any written notes exist for a production, it is usually the ballet mistress or master who
creates and maintains them. She or he must be able to count every phrase of the music for the
production from memory, preferably while singing the main themes. She or he must know, at least in
general, each dancer's part and all their entrances and exits. In a pinch she or he must be able to
dance the parts of dancers who are not present so the rest of the company is not disrupted by the
absence. This may mean filling in for a chorus member or a soloist.

The ballet mistress or master must be able to spot and correct mistakes and be ready to arbitrate or
break the tie in any disagreements among the dancers, like, "We are supposed to be in the air on
seven." "No, we are supposed to be on the ground on seven." She or he must also be able to make

compelling arguments to nondancers like lighting engineers and the musicians. For instance, the ballet
mistress may need to persuade the conductor that the fouetté music must be played at a slower tempo
so the prima ballerina does not fall down or spin off the stage like a runaway top. By the way, this is a
validation on the part of the ballet mistress; it is based on her judgment. Verification would require that
the argument be tested to verify what actually happened to the ballerina turning at the questionable
tempo.

The ballet mistress or master is primarily a technician, not a manager; however, she or he must be able
to manage the various egos and temperaments in the company to keep everyone happy-that is, ready,
willing, and able to give a splendid performance.

The company takes correction from the ballet mistress or master for two reasons. The first is that only
dancers with a long and broad experience base are chosen to perform this very demanding role, and
their corrections are virtually guaranteed to improve the quality of the performance. The second is that
the ruling of the ballet mistress or master can only be overturned by the choreographer.

So, while the experts, like the soloists, focus on giving the best performance possible in their part of the
production, the ballet mistress or master is the integrator responsible for testing and fine-tuning the
production as a whole. All these players, working together, are necessary to ensure a truly excellent
performance.

We are human beings. Our endeavors include these roles because they are effective in managing
human undertakings, particularly ones that require cooperation-teamwork. Each discipline has a key
person who performs a role similar to the ballet mistress. In the symphony it is the conductor, in singing
it is the choral director, in acting it is the director, and in sports it is the coach.

In safety-critical software, the testers are generally the most experienced people on a project, and their
rulings are rarely challenged or overturned. It is not hard to imagine what happens to the entire process
if this integrator's role in the test process does not exist, is filled by someone who is poorly informed, or
is filled by someone who doesn't have a technical background.

Many case studies show that the software testers should be involved in the software design and
development phases, yet the industry continues to treat software testing as an afterthought, and testers
as unskilled temporary positions that can be filled by persons with no special training.

In keeping with my role as integrator, I go to great lengths to make sure I am invited to the design
meetings and brainstorming sessions whether it is part of the plan or not. If that fails, I rely on the
friends that I make among the designers and programmers to keep me informed. If all of these things
fail, most especially if I am forbidden access to the developers, I cannot possibly succeed. When I do
contract testing, I have clauses that allow my company to withdraw from the project in this situation.
Even if I cannot withdraw, I am duty bound to report to my management, in writing, that the situation is
untenable and that I cannot perform my job in a satisfactory manner.

Engineers communicate in writing. Except for clarifications, the field engineer gets all of her or his
knowledge of the project and instructions from the plans. This means that the plans must be well
thought out, precise, and up-to-date. When a situation arises that is not covered in the plans, the field
engineer prescribes a solution, generally after consulting with a colleague and getting a second opinion
to back up her or his own. Since I have already discussed the problems associated with trying to create
and maintain paper documentation in the fast-paced software development industry, it should be clear
that the engineering methods applied to software development often break down at this point. Workers
do what the field engineer says because the engineer is the authority in charge. The field engineer's
decision can generally only be overturned by direct challenge and an inquiry by other engineers at the
behest of the owner or general contractor. Even if the field engineer's decision is demonstrated to be
wrong, it may not be easy to overturn it.

Since the paper documents in the software development effort are rarely able to keep up with the actual
developments, the integrator who tracks the evolution of the project firsthand can be more effective in
managing a software test effort than the engineer relying on the written documentation. This advantage
that the integrator has via word of mouth should diminish as we focus on implementing self-
documenting strategies in electronic media to replace transcribed paper documentation, but these skills
are always beneficial.

Traditionally, engineers are far removed from human factors concerns. A lack of concern for or

understanding of the needs and priorities of people is a serious disadvantage for anyone trying to
manage people today. The company loyalty that used to allow managers and engineers to rule by
decree has been severely eroded. Recent studies have shown that the employees are more likely to
feel loyal to their current project than to their company.

Over- and underplanning is one of the hottest issues being debated in the software journals in 2002.
The Capability Maturity Model disciples require extensive planning in the best engineering tradition;
meanwhile, the Agile developers prefer to produce and test small bits in immediate response to
customer requirement or evolving thinking. In the theatre this is the difference between a
Shakespearean play and an evening of improvisation. Like it or not, they both have their place.

In engineering, the finished project is rarely better than the plans. In art, the project owes little
allegiance to a plan; it improves and evolves continuously. It is never finished, only released.

Note Two points for engineers in software to keep in mind:

You need to pick the right tool method or approach for the job at
hand.

1.

You need to remain flexible and plan for change.2.

Engineering provides methods for presenting and winning arguments through fact and measurement
that are far superior to those used in the arts. The arts use the critique to make people aware of
problems. Criticism is typically subjective and personal, as in "You made a mistake." Criticism is not
easy to accept, especially for those not raised in a discipline where criticism is commonly used. The
use of criticism leads to adversarial situations. Good engineering uses objective measurement and fact
to make corrections. Facts and measurement are impersonal and much easier to accept, as in "There
is a mistake that we must fix."

It has been said, "measure to discover," to which we should add, "not to lay blame unnecessarily."
Testers who use engineering arguments, fact, and measurement are in a better position to be effective
in assessing the actual importance of issues and win their points while avoiding adversarial encounters.

Sometimes neither the classical ballet mistress integrator nor the engineering approach is acceptable.
Artists who are in the throes of the creative process with little or no supervision are not necessarily
overjoyed to have an alternate authority introduced into their project-especially if they have succeeded
in discrediting or dismantling the in-house test group.

An interesting outgrowth of this situation is the rise in popularity of the external review. An external
review takes place when someone outside the project, or outside the company, tests the system and
writes a bug report called a review. The review is submitted to management. Those writing the external
review are disposable bad guys. Issues listed in the review are generally taken seriously by
management because the source is external and uninvolved, and the arguments presented are
generally unbiased. Many of the same issues may well have been logged by the in-house test group
and denied by development.

Testers do not have to be experts in a system to test it well. They must be trained testers, using a
systematic approach, sound reasoning, and measurements to make their case. They must also be well
informed about the project and have good channels of communication to the experts. People skills are
also a definite plus.

Like it or not, good testing also includes exploration. Good testers are the ones that dig in and explore
the system. They want to know how it works. The ones that don't dig in aren't going to get the job done,
and the ones that think they know how it works are no good either, because they are closed and
biased.

The Top-Down Approach versus the Bottom-Up Approach

The approach to testing that was entrenched in the industry in 1987 when I began testing was the
bottom-up approach. Basically the bottom-up approach to testing proceeds as follows: Each module or
component is first tested alone; this is called unit testing. Next, the modules are combined a few at a
time and tested. Simulators are used in place of components that are necessary but missing. More
modules are added when the existing ones are stable until the entire system has been assembled. This

very cautious approach is also from engineering; it is rigorous and thorough, but it is also very slow. It
has one major drawback: Testers are testing the simulators, not the real system. I haven't seen a real
system yet that behaved exactly like the simulator.

The bottom-up approach is a rigorous testing approach that comes from engineering. When applied to
today's commercial development environment, bottom-up testing is like teaching each performing group
their parts, then bringing them together, a few at a time, to rehearse. It is a very long and laborious
process to assemble the entire cast, because the group dynamics change each time new cast
members are added, creating a new set of issues at each step, none of which is relevant to the finished
product. Such rehearsals are only of value if it is important to know in advance what the system
behavior is likely to be if some of the members are not functioning. This type of testing may lead to a
test effort that contains a huge amount of unproductive redundancy. However, sometimes it is the only
way to accomplish the goal.

Top-down testing is like teaching each cast member their part individually, then getting as much of the
system as possible together for a rehearsal as soon as possible. In the top-down approach to testing,
each module is first unit-tested, then all the available modules are assembled,[1] and the entire group is
tested as a system from the highest possible point, usually the user interface, with as few simulators as
possible.

In the top-down approach, testers begin with the integration phase. This requires that the code has
been unit-tested before it is delivered to the testers. If the unit testing has not been successfully
completed or if the units lack integrity, top-down testing will not succeed. If the new system is too
unstable to test, the best that the tester can do is subdivide it and try again. Testing the whole system
will not succeed if most of the test time is spent diagnosing buggy units.
[1]This strategy for building a system from modules as they became available is also called incremental
delivery.

Current Testing Strategies

Let's explore the types of testing being done and the pros and cons of various strategies that place the
test group in various parts of the organization.

Assumption #1. The developers have unit-tested the code.

In both the bottom-up and the top-down approaches, the most common assumption testers state
when they begin testing is this: "The developers have unit tested the code." I state this assumption
in all my test agreements, and it is always a requirement in my contracts to test.

Top-Down Broad-Focused Integration Testing

When I test, I have no particular interest in any one part of the system, but rather I am interested in the
whole system. After all, my assignment is almost always to verify and validate the system. The system
includes applications and components programmed using everything from object-oriented programming
(OOP) to assembler to batch languages. Network communications protocols carry transactions
between these components through various routers, switches, databases, and security layers.

The system is not a finite state machine; it is a society of components interacting constantly with a
dynamic group of stimuli. It is practically impossible to know all the stimuli and interactions going on in
even a small group of components at a given instant. The Heisenberg uncertainty principle, which
states that "the more precisely the position is determined, the less precisely the momentum is known in
this instant, and vice versa," certainly applies: We can only prove that these components exist, not
what state they are in at a particular time.

In much the same way as no single algorithm is sufficient to map all the paths through a complex
system, no single type of testing used by itself will give a satisfactory result in this case. Traditional
system testing, the kind that digs deep into individual components deep in a system, can completely
ignore things like the user interface. Function testing, or end-to-end testing, can completely ignore
systems issues that may cause total paralysis in the production environment. And, while I am sure that
they exist, I don't personally know of any companies willing to pay for different groups of experts to
perform unit, integration, system, function, end-to-end, load, usability, and user acceptance testing for
the same system.

As a result, I perform whatever types of tests are appropriate for the situation. The types of tests
performed should be clearly illustrated in the test inventory. For examples on types of tests to perform,
see Chapter 4, "The Most Important Tests (MITs) Method," where every type of test is represented on
the same task list. Experts, on the other hand, each have a specialty, some point of fixation about
which they are undoubtedly biased.

Bias is a mental leaning or inclination, a partiality or prejudice. It is natural and healthy for specialists to
be biased in their view of their project. Much like a proud parent, the experts' partiality gives them a
tight focus that ensures maximum quality in their project. However, all of these child projects must grow
up to function as an integrated system in the real world. The contemporary software tester must make
sure that they do this.

Today's test professional must be, among other things, an integrator whose focus can take in the entire
system. Testers who do not have training in test techniques and a good command of test metrics will
have a hard time rising to this challenge.

Organizational Strategies for Locating the Test Group

I have consulted in all types of organizations, and I am constantly amazed at the variety of places
management comes up with to stick the test group. My experience indicates that no matter where the
test group shows up on your org chart, it is important to pick a location in your organization that
maximizes good communications and the free flow of information. Every location has its pros and cons,
as I point out in the next paragraphs.

Have an Independent Test Group under Their Own Management

This approach sounds great, but unfortunately it has some major flaws. First is the fact that the test
group can become squeezed between the development and operations groups. If communications fail,
the testers can find themselves with adversarial situations on both sides. If the developers are late with
the code, the testers will be the ones who have to either make up the time or explain the delays to
operations. Testers need allies, and this organizational strategy has a tendency to put them in a
situation where they are continually the bearers of bad news and often made to be the scapegoats.

Put the Test Group in Development

There is currently a trend toward moving the testing functions into the development area and away from
a separate test group. There are two dominant themes behind this trend. The first is to break down
barriers between the two groups to allow better communications. The other rationale is along the lines
that the test group is not competent to conduct system testing; therefore, the developers are going to
conduct or assist in conducting the system test.

There is a serious problem with both these rationales. The developers certainly have expertise in the
system; generally, they are the ones who wrote it or maintain it. Both of these strategies achieve the
same result, "having the fox guard the henhouse." Even if the developers doing the testing have
training in software testing techniques, a rare thing at best, they suffer from the bias previously
mentioned. Not only are they likely to miss bugs that their bias forbids them to see, they are not likely to
test outside their area of expertise. A system test alone is not likely to remove bugs in the user
interface or in the function sequence steps, but these bugs are the first bugs that the end user is likely
to see.

Any tester who has ever had to try to convince development that an application that ties up the entire
PC for a couple of minutes while it does a database query has a serious bug knows exactly what I
mean. A tester arguing this point without citing some type of standard has a poor chance of being
heard. Just about every user interface design guide recommends constant user feedback and response
times of less than 5 seconds. Usability lab studies indicate that the user believes the application is
hung after a 20-second period of inactivity. But even the tester who cites a design guide standard for
response time is likely to find out either that the recommendations of the design guide have been
waived or that the developers are not required to follow any of the cited design guides at all. The
developer's bias may come from knowing how much trouble it was to get i t to work as well as i t does.
They may not be anxious to take time away from current commitments to try again, especially when
fixing the bug may mean a massive rewrite.

Another example is the situation where developers see nothing wrong with a menu option that says
Report Writer but takes the users to a window titled Able Baker-especially because there are several
other menu options in the same application that navigate to windows with equally mismatched titles. No
matter that the design guide clearly recommends against such confusing labels. After all, if
development changed one of these labels, they would probably have to change them all. Surely, the
issue cannot be that important. It is very challenging to come up with an argument that will convince
developers and management that the fix is worth the cost and effort.

However, having pointed out the types of problems that can arise when the test effort is moved into
development, I must also say that I have seen it work very well. The environments where this approach
is successful have fairly small, highly competent programming groups of three to ten programmers,
producing high-reliability class software or firmware. Typically, these projects last from 6 to 12 months,
and after unit testing, no developer tests her or his own software.

The other thing that these successful efforts have in common is that the systems that were being tested
by developers for developers were small stand-alone systems, such as firmware for telephone
operators' stations, firmware for pagers, and medical imaging software running on a single platform.
When this testing strategy is used in large systems, or on components that will run in large systems,
the method fails. Even if the testing is thorough, in this situation, it only amounts to a unit test, because
when this product is introduced into a larger system, it must be integrated into the larger system. This
brings me to the next interesting trend that I have observed in large networks, propping up the product
with support.

Don't Have a Test Group At All

It is far too simplistic to assume that companies must test their products or go bankrupt. There are
many companies that do little or no testing and not only survive but prosper. Their prosperity is not
often the result of flawless programming. These companies often have divvied up the test group or
disbanded them altogether. Whatever pre-production testing is done is done by the development group.

Note What happens when there is little or no testing? The users test i t. But then what? You prop it
up with support.

These organizations typically have several layers of support personnel. The first layer of support
personnel are generally junior-level people who log the issues, answer common questions, and try to
identify and route the more difficult issues to the next layer of more technically competent support
personnel. In times past, the testers often filled the second layer of support, since they were the
experts on the system and its problems.

Problems that can't be resolved by the second level of support are escalated to the third and most
expert layer. The third layer of support is usually made up of senior wizards who understand the depths
of the system. These folks have the best chance of diagnosing the really tough problems. Generally,
what they can't fix outright they send back to development, and they are likely to get a speedy
response.

Management may not see the need to pay for highly competent and experienced testers, but that is not
the case when it comes to support. The typical third-line support person is a senior-level programmer or
systems engineer, whereas the programmers writing the bulk of the code rank one or two levels below
that. The reason is simple: Eventually the bugs get to the users and become prioritized by the user's
demands. Management doesn't have a problem justifying highly paid technicians who make the
customer happy and get the right bugs fixed. This is a logical outgrowth of the "let the customers test it"
approach started by the shrink-wrap software industry in the 1990s.

It is logical that this situation should arise given the chain of events I have described, but it is not
obvious to many people that the testing is often going on after the product has been shipped. The
support team may be testing the product, and the customer is almost certainly testing the product. I find
it interesting that support personnel don't think of it as testing; they generally describe what they do in
terms of tuning the system and fixing bugs rather than in terms like testing. The users are doing the
testing.

Another flavor of this trend is to let the customer test the product under the guise of installing or
upgrading their system, while providing one or more senior support staff to manage the process and get
the bugs fixed ASAP.

This approach of propping it up with support is very appealing to the manager who shipped the product
without testing. In fact, such support is required. This approach requires no test planning; no time is
spent designing or tracking tests. And, only the most important bugs get fixed. The problem is that the
cost of finding and fixing bugs grows geometrically the farther the bugs get from the developers. This is
the most expensive way to find and remove bugs. And, again, only the most important, obnoxious bugs
are removed.

Put the Test Group in Operations

I have found putting the test group in operations to be a very healthy and productive practice. This is
the location I prefer. In my experience, operations is the best place to be when testing a system. The
people who control the system are my best allies. Proximity to the person who can help find the
problem in a complex system is invaluable.

When I am attached to operations, I am in a position to add a great deal of value to the released
product, in addition to the test effort itself. Consider the following: When I am testing a system, I am
really getting it ready for the customer. Often I am also writing or reviewing the user guide at the same
time as I am testing. If I have to write up any special instruction to make the system or product work,
like how to tweak this or that, these are passed along to customer support and thence to the customer.

Finally, a good test suite is also a diagnostics suite. So if I am a part of operations, then there is a good
confidence level in the verity of my test suites, and again proximity makes it easy for operators to get

expert help in maintaining and running the tests and interpreting the results. In this situation my test
suites are reused, sometimes for years.

The only way to make test replay automation cost-effective is to make sure the automated tests get lots
of reruns. In a single test effort, many tests are only performed once and never again, so it is not worth
automating them. However, in this scenario, the automated tests can be incorporated into diagnostics
suites that are run in the production environment to help make sure the system stays healthy. This type
of reuse really adds value to the testers work.

The Best Approach

As the Vulcan philosopher said, "Our diversity is our strength." The more points of view represented in
the testing, the more defects will be found. Ideally, use as many approaches as you need or,
realistically, as many as you can afford.

I advocate putting the testers in close communications with the developers, with as few barriers as
possible, but I do not advocate having them all report to the same manager. People with the same
leader eventually come to have the same view. The dancers have their ballet mistress; the musicians
have their conductor. Each group has its own point of view, and each needs someone to represent that
point of view. All of them have the same goal: an excellent production.

An approach to management that builds a strong team working together transferring knowledge to get
the job done is far preferable to one that allows testers to become isolated. Isolated testers can be
overwhelmed by the size of the task they must perform.

One of the ways to cultivate good relations between developers and testers is to minimize the
subjective arguments used in validation. Use fact and measurement to report problems, not opinion.
Another way to cultivate good relations in any team is by being interested in what everyone is doing,
like the ballet mistress who must know each person's part. The purpose is not to check up on them, but
to properly appreciate the scope of their effort and the merit in their accomplishments.

Plan the best approach for the system. If the building blocks or units are good, top-down testing is the
most efficient way to accomplish testing. If the quality of the units is uncertain, or if there are high-
reliability, safety-critical considerations, a bottom-up approach is usually considered best practice. For
example, a bottom-up approach may be necessary when a significant amount of new (untrusted)
objects or processes are involved. Almost all of the examples in this book use a top-down approach.

If the development effort is some flavor of RAD/Agile, top-down testing with an integrator coordinating
intergroup communications is probably the best approach. The best successes I have seen use a brief
bulleted style for the design documents during the development phases. When the product nears
completion, the user guide becomes the vehicle used to document the design. In high-reliability and
safety-critical projects where the bottom-up approach is used, it is common to see more formal
documentation carrying more of the communications between groups. The role of integrator in a
bottom-up effort is traditionally filled by an engineer. Whichever approach is used, the test inventory
must still be constructed for the project.

Summary

The commercial software industry is highly volatile. The current climate is one where getting the
product to market first with the right features is often considered more important than product reliability.
This market is very attractive to entrepreneurs who have been very successful using the I-feel-lucky
approach to software development. Interest in reliability is growing, but it does not seem to be due to
any increased accountability on the part of software makers. The demand for greater reliability seems
to be a response to decreasing profit margins and tighter fiscal controls.

Many people in the industry call themselves engineers, but they do not conduct business in accordance
with engineering principals or practice. These so-called engineers do not use metrics or calculations
based on measurement, are not overly concerned with reproducible results, and are not made
accountable for their actions. A demand for greater reliability inevitably will lead software makers to use
scientific methods, because these methods and metrics yield predictable, reproducible results. If there
are no methods and metrics being used, decisions will be based on the I-feel-lucky approach. The I-
feel-lucky approach will not keep a software company profitable.

This is a good time for the tester who can demonstrate solid test methods and measure results,
because management is paying attention. Testing must demonstrate its value, or it will not get budget.

The best approach to testing software will normally be a blend of several approaches:

The precision of an engineering approach and the human factors benefits of the artistic approach.

The depth of the test coverage achieved by testers who are specialists in specific areas and the
breadth of the test coverage achieved by generalists who are competent testers across entire
systems.

The fast but minimal test coverage achieved by top-down test coverage and the slow but more
thorough bottom-up test strategies.

The tester's challenge is to achieve the correct balance between creative freedom and engineering
discipline, between delightful surprise and comfortable predictability. Science and engineering methods
supporting a creative process provide the efficient way to establish the correct balance. The science of
engineering provides methods that are a good fit for the needs of software development and testing.
However, care must be taken that these methods do not become rigid and unchangeable or they will
cease to be a benefit.

Many approaches to developing software are in use today, and you must select or develop an
approach to testing that is effective and efficient in the development environment producing the thing
that you must test. To do this, first look at the approaches that are available, and then strike the best
balance for your situation. I will go into how to do this in more detail in the next chapter, when I explain
the Most Important Tests method. After that, the rest of this book is about this very simple set of
fundamental testing methods that bring value to any test effort individually and can have a profound
effect when applied together.

Chapter 4: The Most Important Tests (MITs) Method

Highlights

The vice president said to the tester, "This has really got to happen fast. We can't afford any slipups
and the whole thing has to run perfectly."

"I understand completely. The whole team is on it," the tester told the vice president.

"It's a pretty good-sized project; how are you going to get it all done? We have to deploy in four weeks
and the code has not been turned over yet. Will you have enough testers?" asked the vice president.

"Well, sir, I am glad you asked, because there are a couple of things we need, and I would really like to
show you what we have in mind. Do you have a minute to take a look?" the tester smiled.

In the last chapter I talked about various approaches to managing the test effort. In this chapter I will
dig down into the actual methods of accomplishing a test effort that is focused on running the most
important tests.

Overview of MITs

The Most Important Tests (MITs) method was developed as an aid to sizing test efforts based on the
risk of failure in the system. While it was developed to be used mainly in top-down system, integration,
and function testing, the methods are viable for all levels of testing. The core of the Most Important
Tests method is a form of statistical testing where testers use several techniques to identify the areas
that need to be tested and to evaluate the risks associated with the various components and features
and functions of the project. These risks are translated into a prioritized ranking system that identifies
the most important areas for testing to focus upon. As part of this process, testers and management
can focus the test effort most constructively. The thoroughness of the testing can then be agreed upon
in advance and budgeted accordingly.

In the ideal situation, the tester, having completed a thorough analysis, presents a test plan to
management and negotiates for the time and resources necessary to conduct a comprehensive test
effort. In reality, the test effort is trapped in the space between the end of the development cycle and
the project release date. The impact of this constraint can vary depending on the timeliness of the code
turnover from development and the flexibility of the release date. In most cases, trade-offs will have to
be made in order to fit the test effort into the necessary time frame. The MITs method provides tools to
help you make these trade-off decisions.

If you are in an Agile development effort, the design changes daily. You may get new code every day
as well. The tests you ran yesterday may be meaningless today. Planning tests is a waste of time, and
you don't have any time to waste. The manager wants to know if the effort is on schedule, but half the
functions that you had been testing (and had considered complete) are not in the latest release of the
code. Your developer has decided that she can't fix the bug that is blocking your other testing until your
business partner (the customer) decides on the sequence of the Q&A dialogs. How do you explain all
this to your team leader? MITs can help you with this as well.

What MITs Does

In the planning phase, the MITs method provides tools for sizing that allow the test effort to be fitted
into a specified time frame. The method allows testers and managers to see the impact of trade-offs in
resources and test coverage associated with various time lines and test strategies. The method uses
worksheets and enumeration to measure time costs/savings associated with various trade-offs. The
MITs tools, such as the worksheets and the test inventory, serve as aids in negotiating resources and
time frames for the actual test effort.

During the testing phase, MITs tools facilitate tracking testing progress and determining the logical end
of the test effort. The method uses S-curves for estimation, test tracking, and status reporting. S-curves
show the status of the testing and the system at a glance. The curves show the rate of progress and
the magnitude of the open issues in the system. The graphs also show both probable end-of-the-test
effort and indicate clearly when the test set has exhausted its error-finding ability.

The MITs method measures the performance of the test effort so that test methods, assumptions, and
inventories can be adjusted and improved for future efforts. A performance metric based on the
percentage of errors found during the test cycle is used to evaluate the effectiveness of the test
coverage. Based on this metric, test assumptions and inventories can be adjusted and improved for
future efforts.

How MITs Works

The process works by answering the following questions:

1. What do we think we know about this project?

2. How big is the test effort?

3. If we can't test everything, what should we test?

4. How long will the effort take?

5. How much will it cost? (How much can we get?)

6. How do I identify the tests to run?

7. Are we on schedule? Have we tested enough?

8. How successful was the test effort? Was the test coverage adequate? Was the test effort
adequate?

Answers

1. We find out by stating (publishing) the test inventory. The inventory contains the list of all the
requirements and specifications that we know about and includes our assumptions. In a
RAD effort, we often start with only our assumptions, because there may not be any formal
requirement or specifications. You can start by writing down what you think it is supposed to
do. In projects with formal specifications, there are still assumptions-for example, testing the
system on these three operating systems will be adequate. If we do not publish our
assumptions, we are deprived of a valuable opportunity to have incorrect assumptions
corrected.

2. How many tests are there? We find out by enumerating everything there is to test. This is
not a count of the things we plan to test; it is a count of all the tests that can be identified.
This begins the expansion of the test inventory.

3. The most important things, of course! We use ranking criteria, to prioritize the tests, then we
will use MITs risk analysis to determine the most important test set from the inventory.

4. Once the test set has been identified, fill out the MITs sizing worksheet to size and estimate
the effort. The completed worksheet forms the basis for the test agreement.

5. Negotiate with management for the resources required to conduct the test effort. Using the
worksheet, you can calculate how many tests, testers, machines, and so on will be required
to fit the test effort into the desired time line. Use the worksheet to understand and explain
resource and test coverage trade-offs in order to meet a scheduled delivery date.

6. Use the MITs analysis and the test inventory to pick the most important areas first, and then
perform path and data analysis to determine the most important tests to run in that area.
Once you have determined the most important tests for each inventory item, recheck your
inventory and the sizing worksheet to make sure your schedule is still viable. Renegotiate if
necessary. Start running tests and develop new tests as necessary. Add your new tests to
the inventory.

7. Use S-curves to track test progress and help determine the end of the test effort.

8. Use the performance metric to answer these questions and to improve future test efforts.
The historical record of what was accomplished last time is the best starting point for
improvement this time. If the effort was conducted in a methodical, reproducible way, the
chances of duplicating and improving it are good.

As I said before, in the ideal scenario, you do all of these things because all these steps are necessary

if you plan to do the very best test effort possible. The next thing to recognize is that the real scenario is
rarely "ideal." The good news is this method is flexible, even agile. Any steps you perform will add to
the value of the test effort. If you don't do them all, there is no penalty or detriment to your effort. Next,
the steps are listed in the order that will give you the best return on your investment. This order and the
relative importance of the steps is different for different types of development projects.

Different environments have different needs, and these needs mandate different priorities in the test
approach. I am going to point out some of the differences and then present different ordering of the
steps to complement each type of effort. Finally, I will give specific examples of three different
development efforts that were all part of the same systems development effort. The MITs method was
used in varying amounts in each of these development test efforts, and it was also used in the system
integration test effort that successfully integrated these individual systems.

How to Succeed with MITs

A couple of factors will influence which methods and metrics are the right ones for you to start with and
which ones are the most useful to you. In fact, you most probably use some of these methods already.
The first factor is the ease of implementation. Some of these methods and metrics are much easier to
implement and to show a good return on the investment than others. Another factor is the development
method that is being used in the project you are approaching.

Plan-driven development efforts use the same MITs methods as Agile development efforts,
characterized as heavyweight and lightweight, but their goals and expectations are different. So the
priorities placed on the individual MITs steps are very different. I will go into this in more detail in the
next section. I mention it here because, over the years, I have collected lots of feedback from students
on these methods. These students come from both heavyweight and lightweight efforts. I find it
interesting that testers from both types of efforts agree on the usefulness and ease of implementation
of the MITs methods.

Methods That Are Most Useful and Easiest to Implement

The following lists show the methods that have been identified as most useful. They are listed
according to the respondent's perceptions of their ease of implementation.

EASIEST TO IMPLEMENT

Bug tracking and bug-tracking metrics

The test inventory and test coverage metrics

Planning, path analysis, and data analysis

MITs ranking and ranking criteria (risk analysis)

The test estimation worksheet

Test performance metrics

MORE DIFFICULT TO IMPLEMENT

S-curves

Test rerun automation

Automated test plan generation

Most companies already have well-established bug tracking tools and metrics. Some have developed
very sophisticated intranet tracking systems that carry all the way through testing to system support and
customer support.

Most test efforts rely heavily on their bug tracking metrics. For the most part, the bug metrics in use are
fundamental metrics with a few derived metrics like mean time between failure and bugs found per
hour. MITs use techniques that allow you to perform analysis based on several types of measurements
taken together. Several examples of how to use these techniques to get a superior view of the state of

a software system are provided in this book.

The one tool that I have seen come into its own over the last 10 years is the test inventory. Today, a
test inventory is considered a requirement in most test efforts, even if it is a continually evolving one.
Ten years ago, almost no one was using an inventory. Still, there is a lot more that the test inventory
can do for you as a working tool, as you will see in the next two chapters.

If you are already using the test inventory, you will see some examples of how to get more value from it
and how your inventory can help you make the step up to path, data, and risk analysis. Once you are
performing risk analysis (even without doing any path and data analysis), you can use the test sizing
worksheet-a tool that will change your life.

Test performance metrics and S-curves are closely related and can be implemented at the same time if
the team has the graphing tool required to produce S-curves. [1] Ironically, the Agile groups I have
worked with have been the ones to see the value in S-curves and take the time and energy to
implement them. This effort is due to the Agile method's need to make quick design changes during the
development in the process.

Agile managers will pay a lot for accurate information about the real status of a project from day to day.
On the heavyweight front, Boeing is the only company that I know of who uses them regularly. Boeing
has been using S-curves for years.

The S-curve is one of the best project-tracking imaging tools extant. These graphs provide critical
progress information at a glance. Agile efforts usually have collaboration technologies in place that
make it easier for them to get team members to report the test numbers that fuel S-curves. So they find
it easier to institute this powerful tool than the plan-driven efforts that must go through a more complex
and difficult documentation process to accomplish the same reporting.

Test rerun automation is one of the most difficult toolsets to get a positive return from, and yet just
about everyone has tried it. The thing to remember about automated test rerun tools is that you only get
a payback if the test is rerun-a lot.

Agile efforts are dynamic. The product is continuously evolving, and so a static test has a short life
span. Capture replay is of little use to an Agile tester. In heavyweight projects, the time required to
create and maintain these tests is often the issue. Even though the tests might be rerun a lot, over a
long period of time, management is often hesitant to invest in the creation of tests unless they are quite
certain to be replayed and the investment recaptured.
[1]The graphing tool that comes with Microsoft Office, Microsoft Graph, is sufficient to do this.

The Steps for the MITs Method

I have already introduced the spectrum of development methodologies in use today. Now I want to
discuss the differences in approach and how testing in general and MITs in particular complement the
differing priorities of these approaches.

Complimenting Your Development Methodologies

Agile and plan-driven teams use different approaches to design and implement software (see Figure
4.1). Proponents of the plan-driven methodology believe in spending up front to acquire information that
will be used to formulate the design, so that they are as well informed as possible before they commit to
a plan. This is called money for information (MFI).

Figure 4.1: The spending priorities of different development methods.

Users of the Agile method choose the design early and modify it as they go. So they reserve budget to
help them adjust and absorb the changes and surprises that will certainly come. This is called money
for flexibility (MFF).

MITs contributes to both approaches by first providing the tools to gather information and predict what
will be needed, and then by giving you the tools to know if you are on schedule at any time during the
process so that you can take appropriate action. However, the order and priority of the steps will
necessarily be different for each of the development methods-and everything in between.

The method I call structured RAD is based on my real-world experiences. It combines the flexibility of
the Agile approach with the more intense up-front planning and research of the plan-driven approach.
My experiences show that typically there is far less risk of failure in this structured RAD approach than
in either of the other two. Notice from the figure that the structured RAD approach typically spends
more on implementation than either of the others. Consider that the test budget is included in
implementation and that the RAD project typically spins through many incremental evolving
development iterations in the implementation phase.

Management will consider various trade-offs regardless of the method they are following. For example,
managers will spend MFI when the outcome is uncertain, as with new technologies or systems. MFI is
used for unpredictable but resolvable or "must-have" scenarios, like establishing system limits or actual
usage patterns. Usually these are things that can be estimated early using simulation.

If the issue is unresolvable, like a complete human factors failure, for example, the customer rejects the
product. Or, if a technology or component is overwhelmed and simply cannot do the job in the real
environment and there must be funding to provide alternatives, this is taken care of by MFF.

Remember, whether something is resolvable is in the eye of the beholder. If the unresolvable problem
is discovered late in the development cycle, the entire investment is at risk. This leads to a situation
where almost no price is too high for a resolution. This can be a showstopper for the plan-driven effort,
which should have discovered the unresolvable problem during the planning phase. Because of their
MFF focus, the Agile effort may well have funds left to find a resolution. There is an example of this
situation in the Agile project in the next section.

Fact: Maturity Is Independent of Method

The Software Capability Maturity Model (SW-CMM) [2] tells us what to do in general terms. It does
not say how you should do it. The Agile methods, and any other formal methods that provide a set
of best practices that specify how to implement the project, can be used with CMM practices. So,
maturity can occur any time, any place; it is not dependent on the methods being used to develop
or test the project.

Granted, the CMM is currently skewed in terms of inefficient paper and overburdened by policies,
practices, and procedures. But that is simply the tradition and legacy of its past. There is no reason
that efficient automated alternatives cannot be used to replace the legacy baggage.

Consider the following sets of steps. They all use the MITs methods, but the prioritization has been
tailored to the development method in use.

MITs for a Plan-Driven Test Effort

This is the original MITs process; the first four steps are devoted to planning. The fifth step sets the
limits and the agreement, and the last three steps are devoted to actually testing.

State your assumptions.1.

Build the test inventory.2.

Perform MITs analysis.3.

Estimate the test effort.4.

Negotiate for the resources to conduct the test effort.5.

Build the test scripts.[3]6.

Conduct testing and track test progress.7.

Measure test performance.8.

The rest of the chapters in this book follow this outline. Chapter 5 covers most of the metrics used in
the method. Chapters 6, 7, and 8 cover the foundation and implementation of the test inventory and all
its parts. Chapters 9 and 10 cover the MITs risk analysis techniques used to complete the test sizing
worksheet. Chapters 11 through 13 cover the path and data analysis techniques used to identify tests
for the inventory. Chapter 14 completes the test estimate and discusses the in-process negotiation
process. (By the way, this information is useful even to an Agile tester because management always
wants to know how much testing remains to be done and how long it is going to take.)

This process offers very good tools for planning up front and fits the traditional "best practice" plan-
driven approach. It works well with traditional quality assurance policies and change management
practices. It offers testers a lot of protection and latitude in the testing phase as well, since they will
have negotiated test priorities, test coverage, and bug fix rates in advance. The superior tracking tools
also give testers the edge in predicting trouble spots and reacting to trends early. This is a good
approach to testing in a business-critical environment.

Agile Development Values

The following is the Agile Software Development Manifesto:

We are uncovering better ways of developing software by doing it and helping others do it Through
this work we have come to value:

Individuals and interactions over processes and tools.

Working software over comprehensive documentation.

Customer collaboration over contract negotiation.

Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

Source: "The Agile Software Development Manifesto," by the AgileAlliance, February 2001, at
www.agilemanifesto.org.

MITs for a Structured RAD/Agile Test Effort

This type of effort is characterized by well-trained people and a high level of professional maturity. In
the CMM scale, they are CMM Level 2 and Level 3. Notice how the estimation phase is shortened and
actual test inventory is created using collaboration techniques. Extra importance is placed on the
measure, track, and report steps because management has a keen (you could say, life-and-death)
interest in the progress of the effort.

Because a Rad/Agile effort is a "code a little, test a little" process that repeats until done, the best
source of status information is the tester. Because of proximity, developer and tester are nearly in
synch and the tester is actually exploring the code and measuring the response. Contrary to popular
myth about testers not being required in a Agile effort and the customer being the best source of
information, Rad/Agile recognized that the customer is biased and not usually trained in the use of test
metrics. Also contrary to some of the popular trends, the tester is necessary in an Agile effort to prevent
requirements creep, bloat, and spin.

Agile management is likely to demand the highest quality of reporting because that is their best defense
against the unknowns that are most certainly lurking out there in the development time line. Remember,
Agile efforts don't spent MFI up front, so they usually haven't pretested all the new technologies that
they are counting on at the back. Their best defense is in early detection of an unrecoverable error so
that they can devise an alternative.

In a plan-driven environment, the developers "code a lot, then the testers test a lot." Meanwhile, the
developers are moving on to something else and coding something new. So, the answer to the
question "Are we on schedule?" has two answers, one from developers and one from the testers.
Consequently, management is likely to get two very different answers to the question. Also, in the Agile
effort, bug turnaround can be nearly instant. In the plan-driven method, developers must stop what they
are doing (new) and refocus on what they did (old). This refocusing causes delays and difficulties.

The following list of steps shows the type of modifications necessary to tailor MITs to fit the needs of a
Rad/Agile effort.

Steps:

Prepare a thumbnail inventory and estimate the test effort (best-guess method, covered in
Chapter 7, "How to Build a Test Inventory").

1.

Negotiate for the resources to conduct the test effort; budget for head count, test environments
(hardware and software), support, and time lines/schedule.

2.

Build the test inventory, schedule, and plan of action including targets; include your
assumptions.

3.

Conduct interviews and reviews on the inventory, schedule, and plan of action; adjust each
accordingly. Perform MITs risk analysis (try to renegotiate budget if necessary).

4.

Generate the tests, conduct testing, and record the results.5.

Measure, track, and report the following:

Test progress using S-curves

Test coverage metrics

Bug metrics

6.

When the product is shipped, write your summary report and your recommendations.7.

7.

MITs for a Free-for-All RAD/Agile Test Effort

This type of project is a typical entrepreneurial effort in a new technology, characterized by lots of
unknowns in the feasibility of the system and often plagued by floating goals. It assumes a low maturity
level on the part of the sales, management, and development communities.

This situation is best addressed using good measurements and very graphic records-ones that tell the
story in clear pictures. Regular reporting of status is very important so that testers keep a continual line
of information and feedback going to the decision makers.

The focus of this set of steps is on tester survival. The product will probably succeed or fail based on
marketing and sales, not on its own merits.

Steps:

Conduct interviews and construct the inventory (ramp up), schedule, and plan of action; perform
MITs analysis. Estimate the test effort (best-guess method, covered in Chapter 7, "How to Build
a Test Inventory").

1.

Prepare a contract to test. Establish and agree to targets for coverage, acceptable bug find and
fix rates, code turnover schedules, and so on. Negotiate for the resources to conduct the test
effort; budget for head count, test environments (hardware and software), support, and time
lines/schedule. Be conservative.

2.

Start testing, and record the results.3.

Measure, track, and report:

Test progress using S-curves

Test coverage metrics

Bug metrics

4.

When the product is shipped or the contract is up, write your summary report and your
recommendations.

5.

Don't work without an open PO.6.

Note Crossing over, sometimes I will throw in a chart or worksheet from a different kind of effort.
Don't be afraid to invent a new way of explaining the situation.

Integrating Projects with Multiple Development Methodologies

I have worked in several large projects where different systems were being developed using different
methodologies. MITs give me all the tools I need to test any of these projects. But again, the order of
the steps and activities will be changed to suit the needs of the project.

Each development effort can be tested using an appropriate approach that is tailored to suit its needs.
The interesting part comes when you integrate all of these systems. It turns out that good integration is
not related to size or development methodology; it's a matter of timing. I use the same tools to integrate
a large project as I do a small one. (More about timing issues in Chapter 7, "How to Build a Test
Inventory.") How rigorous the approach is will be driven by the goals of upper management and the
criticality of the final integrated system. Usually if it is a big project, it will be critical, and so even though
many parts of the project may have been developed using Agile methods, the integration of the system
will likely be conducted using a plan-driven approach. In any case, timing issues require a good deal of
coordination, which requires good communications and planning.
[2]See the Glossary at the back of this book.

[3]This book covers the first five steps of the method in detail. Steps 6 through 8 are left to a future
work.

Real-World Example: Heavyweight, Middleweight, and
Lightweight Development Efforts

The case we will discuss was a real project that was extremely large. It included many subcomponents
that were each large systems in their own right. These systems all had their own development groups,
platforms, hardware, and so on. In the real project, the main integration effort was responsible for
integrating 12 major systems. For this book I have selected three of these projects that were particularly
good examples of what I characterize as heavyweight, middleweight, and lightweight development
efforts.

The heavyweight project was an old-style mainframe application. The middleweight project was an
object-oriented multi-tier client/server application. The lightweight project, my personal favorite, was a
first-generation Web application that migrated an old proprietary document management behemoth to a
cutting-edge standards-based architecture. Each of these efforts used MITs methods somewhere in
their process. You will see many of the examples in this book taken from these projects.

Overview of the Project

This 1998 project involved two shipping companies. One company was buying the other and integrating
the assets, employees, customers, and business systems of the two. The day-to-day business
conducted by the companies was highly dependent on some very large, complex scheduling systems.
The object of this project was to integrate the business-critical scheduling system of the parent
company with that of the acquired company.

The scheduling system was linked to several other systems for the purposes of sharing or accessing
data and business logic. Most notably in this example, scheduling accessed the billing system and the
automatic document generation system. It performed tasks like checking schedules against contract
agreements and generating documents, which included everything from weight tables to contracts, bills
of lading, and invoices. These other systems were also being modified or created and then integrated
as part of the buyout. The integration of all of these systems was in the scope of the overall integration
test effort.

The various development groups at the parent company were operated in what is called a silo
structure. That is, each one was autonomous with its own budget, management, programmers, culture,
and methodology. Integrating the many systems that ran the business had been accomplished one at a
time over a period of years. The interaction of these many systems was only partially understood in any
given silo.

To minimize the impact on the day-to-day business activities, upper management wanted all existing
and new systems to come online at virtually the same time. The buyout and the subsequent integration
of the acquired business was to be undertaken as a big bang effort with all the new systems scheduled
to come online on the same day; this first day was called the "split" date. The integration test effort was
chartered to make this big bang a success from the very first day.

The system integration effort was to be conducted by an independent group reporting to their own vice
president in charge of split day integration. They were to have the full cooperation and support of the
operations group and all the development groups. They were responsible for planning and designing a
test effort that would integrate and test all of the new systems. The system integration team came from
many different parts of the company and various contract testing organizations.

A change control board was formed, and procedures were written to control the migration of code,
modules, and systems from development through the test environments and finally into production.
Operations supplied the test systems and the support personnel to maintain these test systems. The
membership of the change control board included the directors of each development silo and
operations.

The Scheduling System

The scheduling system processed millions of transactions each day. There were several major
subsystems. For example, there were hundreds of freight containers being tracked by the system at

any given time, not all of them belonging to either the parent company or the acquired company. The
contents in these containers could be almost anything that was not perishable. Central to the
integration effort was the system that actually scheduled the freight containers to be in a certain place
by a certain time so that they could be routed onward. There was a subsystem that tracked the engines
that moved the containers, as well as subsystems that scheduled maintenance for both the freight
containers that belonged to the company and the engines.

Failure of any part of this scheduling system was considered unacceptable. Further, the scheduling
system had to be 100 percent available, and so was fully redundant. The production system and data
center was "owned" by the operations group and staffed by some of the most senior technical staff in
the company.

The scheduling system ran in an expanded high-reliability mainframe environment. The project did not
include any architectural changes to the platform or hardware environment other than the expansion of
data storage capacity and the addition of processing power to handle the predicted new loads.

The company commissioned a complete analysis of the data center under the existing and the
projected new loadings. The analysis was conducted by the mainframe vendor, and the system
modifications were made in accordance with their recommendations. The newly expanded system was
put into service eight months before the expected big bang on the split date. Three integration test
systems were also constructed and provisioned at the same time.

The scheduling system project had in excess of 160 individual Project Development Requirement
documents (PDRs); each was a development effort in its own right, with its own budget and developers.
The senior developers were all Subject Matter Experts, or SMEs, in one or more areas of the system.
These SMEs typically participated at some level in the development of all PDRs in their area of
expertise. Experienced programmers wrote most of the code, and junior programmers performed the
testing and maintained the documentation.

Testing the Scheduling System

The scheduling system was implemented using a traditional plan-driven approach with a rigorous
contract and requirements-based development process, overseen by outside auditors. The scheduling
system was built and tested using traditional formal requirements documents, quality assurance
practices, and change management. A multiphase bottom-up approach to testing was used. Code
reviews, unit testing, module testing, and preliminary system testing were all conducted by developers
prior to turnover to the change management board for integration testing. The methodology was about
as heavyweight as it gets-except that there was no independent test group prior to the systems
integration phase. No metrics were made available on these test phases.

Best practice was observed throughout, and requirements were not allowed to creep; only minor
corrections were accepted by the change board. The test inventory for the integration test included
thousands of test cases.

The original system integration test effort was scheduled to take nine months. The system did deploy
on time but with a reduced feature set. Testing and integration continued for an additional 18 months
before the parent company had actually integrated the acquired scheduling system. The end cost was
300 percent greater than the original budget. No serious failures occurred in the deployed production
system. We will discuss various aspects of this test effort and of the integration test effort throughout
the rest of this book.

The Billing System

The parent company's billing system was being modified to accommodate the new billing rates from the
acquired company, the contractual differences between the two companies, and the predicted higher
systems requirements due to the increase in volume. Each company had a proprietary system in place.
Consequently, the database schema and structure of the two systems were quite different. This meant
that all the data (an enormous amount of data) from the acquired company would have to be
normalized, or converted into an acceptable form (or both), and then assimilated by the parent system
in a short time. Failure to convert and integrate the billing data would translate into millions of dollars in
lost revenue for the parent company and possible losses to the customers as well.

Because of United States antitrust laws and other legal constraints, the parent company could not start

processing any data from the acquired company before the actual acquisition. The parent system was
required to process and incorporate all the billing data of the acquired company within a 30-day window
once the acquisition was final.

Several special data conversion programs were written and tested to prepare for the acquisition date.
These were tested first by the developers and then by a special integration team that specialized in
testing all types of data and message flows into the new system.

The billing system itself was an object-oriented, multi-tier client/server application system. The billing
system projects were developed using Dynamic Systems Development Method (DSDM).

My Perspective on DSDM

DSDM is a descendent of RAD that was developed in the United Kingdom. It uses an iterative
approach to develop each phase of the product: functional model, design and build, and
implement.

I consider DSDM to be a good middleweight methodology. It is usually listed with the Agile
technologies, but I would describe the DSDM projects I have worked on to be flexible, plan-driven,
highly disciplined, and well-documented efforts, which also feature some of the best trained
professionals of any development or test effort. Based on my experiences, I would describe DSDM
as a very effective methodology for bringing middle-sized, object-oriented, business-critical projects
to completion on time.

The system used a SQL-based relational database management system (RDBMS). The business logic
layer ran on servers built on the UNIX platform. The clients ran on high-end PCs running the Windows
Workstation operating system. The clients required standard IP LAN network connections to the server
system.

Testing the Billing System

The billing system was tested using a planned incremental delivery top-down approach by the test
group inside the billing silo. Major features of the new billing system were delivered to the change board
and integrated one at a time by the integration test group. The code was assumed to be ready to be
integrated when it was delivered. There were only a few occasions when the code was turned back for
failure to pass a smoke test.

An independent contract test organization was hired to perform the system testing the project. There
was one tester for every two or three developers. In addition to evolving a very comprehensive top-
down test suite, these testers successfully implemented a large number of automated test suites that
ran from the PC client environment. Some of these automated suites were also used by the integration
test team and in production after the live date.

Bug reporting was accomplished in a private SQL-based reporting facility that lived in the billing silo and
was visible only to project personnel. The business partners, who were the customers of the system,
reviewed the system at milestones. If they had issues, they reported them to the testers, who then
logged the issues.

Some flexibility was allowed in the systems integration testing phase, since the original plan had called
for testing the billing system against the new scheduling system currently in the cleanest integration
test environment. This was not possible, because the billing system was delivered on time, while the
scheduling system lagged behind. So, the billing system arranged to set up their own integration test
system with feeds from the real production system. There were several plan changes of this type. The
eventual cost of the test effort was higher than planned, but the time frame for delivery did not slip. The
test inventory included 80 PDRs and hundreds of test cases. One serious program failure did occur
with the billing system, but it did not impact any scheduling system functions.

There were, however, serious deployment problems with the client application at the acquired company
field sites due to the lack of a LAN network infrastructure and, more importantly, due to the older DOS-
based equipment at the field offices where the client would need to run.

Various PDRs covered the hardware upgrade issues, but the human factors turned out to be the
limiting factor. Newly assimilated personnel had their hands full simply getting used to all the changes
in their daily routines without having to learn how to operate an entirely new mouse-driven computer
system and billing application. For example, if the bill of lading for a freight container was not present
when the cargo was loaded, the freight container could not be moved. The yard operator had to wade
through some 50 menu choices before they could print the bill of lading to a network printer (located-
they weren't sure where) for a particular container. In the first weeks after the split date, the client-side
failure rate was significant.

The Document Generation System

The documentation generation facility was a new Web-based system that was being implemented
using an eXtreme approach (although the method was not called by a particular name at the time).

Management had agreed to try a new RAD approach to developing this system because it was Web-
based and it relied on several new database technologies that had not been proven in commercial
environments. It was recognized that there were substantial risks in trusting this new technology. It was
also recognized that even though the end product documents were well understood, no one really knew
what the final system would look like or how it would perform the task of generating these documents.
The business partners had a long list of things that they did not like about the legacy system, and that
list, coupled with the required end product documents, served as the beginning requirements for the
project.

Management understood that a flexible, lightweight approach to design and development with a heavy
emphasis on prototyping would be most likely to succeed in this environment. The director, whose
brainchild it was, was given a free hand to organize her resources any way she chose. The code
developed and tested by her group joined the traditional process oriented integration effort when it was
turned over to the change control board. From that point forward, all the code, modules, databases,
and systems from all the projects were subject to the same rules and procedures.

Testing the Documentation Generation Facility

The documentation generation facility was developed using a methodology that was very similar to
what is now called eXtreme Development Methodology (See the following sidebar). While the
development community insists that individuals following the latest Agile approaches, like eXtreme
Programming, are not abandoning discipline, but rather excessive formality that is often mistaken for
discipline, it is not hard to imagine how a method of this type could become an "I-feel-lucky" approach.
In this case, however, it did not. This project was so remarkable that I published two papers on it in
1998 and 1999: "A Team Approach to Software Development" and "The Team with the Frog in Their
Pond."

eXtreme Programming (XP): A Thumbnail Sketch

XP is an iterative development methodology that is based on 12 basic tenets:

Customer is at the center of the project.1.

Small releases.2.

Simple design.3.

Relentless testing.4.

Refactoring (adjust code to improve the internal structure, make it clean and simple, remove
redundancies, etc.).

5.

Pair programming.6.

Collective ownership.7.

Continuous integration.8.

40-hour work week.9.

On-site customer.10.

11.

12.

9.

10.

Coding standards.11.

Metaphorically, development is guided by a story view of how the system will work.12.

XP is a "small project" methodology; it's not known to scale well (6 to 12 developers is considered
ideal).

Source: Adapted from Kent Beck, Extreme Programming Explained: Embrace Change (Addison-
Wesley, 1999).

The project was housed on one whole floor of a large building. The only rooms with doors were the
bathrooms. All team members were given cubicles. Each developer was teamed with a tester and a
business partner (the customer). This unit was called a feature team. The entire project had 10 to 15
feature teams. Feature teams working on related PDRs became a cluster. Each cluster had a
dedicated leader who was responsible for administrative and reporting tasks, along with escalation
activities if they were needed.

The cubicles of a feature team were always touching. If one team member wanted to talk to another
member of his or her team, all he or she had to do was stand up and look over the cubicle wall. How a
feature team used their three cubicles was up to them. Some teams chose to remove the dividers
altogether so that they could share one large space.

Each developer submitted new code to the tester and business partner as soon as it became available.
The tester was responsible for integrating the new code in the larger documentation system and for
testing (finding bugs in) the code. The business partner was responsible for validating the functionality
of the code. If the business partner didn't like the way the user interface worked or how the workflow
process worked, they reported it as a bug. There weren't very many arguments about "is it a bug or
not?" Most solutions were devised and implemented so quickly because of the proximity of the team
that there was no need to log the bug.

Status meetings were held every morning. All members of the feature team were jointly responsible for
meeting delivery schedule and reporting progress.

Even though the development methodology was one that could easily lack discipline, these teams
successfully implemented some of the most difficult of the MITs' methods and metrics during the effort.
They were able to implement and use S-curves to track their progress and estimate when the code was
ready to deliver-a task that requires a high degree of maturity. They credited these methods with
keeping them on track, preventing excessive feature creep, and providing an excellent communications
tool for upper management. However, the methods could not have succeeded without the gifted and
insightful management that governed the project.

The team added functions to the test inventory so that it would support several innovative ways to
leverage the work that they put into the test inventory. They added columns to track when tests were
run and categorized tasks so that sort routines could automatically generate lists of tests for the testers
to perform when that code was being integrated. These "test lists" were what I would call test suites of
related short form test scripts, with blank spaces for the testers to add notes and outcomes. These
forms were filled out as the tester executed the various tests, and at the end of the day, they had a
complete log of their testing activities. Record keeping was a matter of putting a check mark in the date
column in the main online test inventory, along with the outcome and logging any open issues.

This effort also developed an excellent, highly visible, and fast method of tracking bugs, as well as a
method that prioritized bugs based on their cost to fix and severity. They called this the "Z form for bug
ranking." (I discuss this methodology in the paper, "The Team with the Frog in Their Pond.")

Briefly, bugs were entered into a lightweight, LAN-based, commercially available bug tracking system,
but more importantly, open issues (bugs) were posted on the wall. Each feature team had its own
poster on the main hall wall, showing a frog sitting on a lily pad on a pond. Bugs were posted in one of
four quadrants in the pond that represented the severity of and cost to fix the bug. Everyone knew
where the bugs were all the time-how many and how serious. If a group needed help, they got it, right
away.

The original test inventory for the documentation facility included 100 PDRs. The final test inventory
included 110 PDRs. No tests were written in advance. Test checklists were generated from the PDR-
based inventory and were used by everyone testing. Once a feature or function had been tested and
passed, it was checked off.

The system suffered several setbacks due to poor performance from the SQL database system that
had been chosen to support the Web-based logic. This was a result of overoptimistic claims made by
the database manufacturer and the newness of the entire architecture. To solve the problems,
database programming consultants were hired to write and optimize SQL queries and stored
procedures to bypass the poor-performing features of the database. The documentation generation
facility was delivered slightly over budget, but complete and on time with some known performance
issues.

The other major challenge that they faced was an integration issue that involved code collisions in the
business logic of a major shared component in the scheduling system. The component was a business
rule nexus used by several of the different groups. The silos rarely interacted, and so the integration
team had to intervene and arbitrate a set of procedures to govern this type of component so that all
changes to it were coordinated. The change management group was able to control versioning so that
the collisions could be identified and minimized.

Integrating the Entire System

One internal group and two different consulting firms were invited to bid on the systems integration test
effort. The internal group had experts from all the major silos on their team and boasted the most
technically competent group of experts extant for the systems that would be integrated. However, they
lacked formal testing experience and integration experience outside their own silos.

One of the consulting firms proposed a RAD-oriented, "test fast and furious" approach, and the other
firm proposed a fairly traditional top-down, risk-based approach to the integration effort. Management
inside the silos feared that the traditional approach would not be able to work quickly enough or be
flexible enough to accomplish the mission and voted for the RAD-oriented approach to testing.

Upper management at both companies felt that the RAD approach could not provide as stable a system
as the more conservative risk-based approach. They opted to go with the risk-based approach
because, first, they felt it would provide better assurance that there would not be any major failures
when the system went live and, second, they felt that the traditional risk-based approach was more
defensible as a best-practice approach in the event that a failure did occur.

This integration effort was huge, and it used much of the MITs methodology. I will be giving detailed
examples from this effort throughout the rest of the book. Here are some of the main points.

When the initial test inventory was submitted by the risk-based test group, it became clear that the
internal group of systems experts had only estimated about 30 percent of all integration tasks in their
scope. Further, they did not have the testing resources or expertise to accomplish the integration of all
the systems in the given time frame. However, no one wanted to deprive these experts the opportunity
to test the systems in their scope, so upper management opted to run both integration efforts in
parallel. The experts tested the message flows to whatever level of detail that they deemed appropriate
and necessary.

The integration test group developed a master test plan for the effort. A major component of the master
test plan was the test inventory. The test inventory was prepared, and the items were priorities and
cross-referenced. Sections of this inventory are discussed at length in Chapter 7, "How to Build a Test
Inventory." This inventory was used by all groups for several purposes.

Initially, the inventory was used to gather information about test needs and relative priorities. The
interview process was used to gather information from the various development groups. The idea was
to establish the risks associated with each project directly from the developers. In reality, it didn't work
quite like that. The risk analysis process for this project was a real learning experience, and we will talk
about it in detail in Chapter 7 and Chapter 9, "Risk Analysis."

When the director of the integration test effort was named, he declared that the inventory was the most
important single document in the effort. It became the basis for reporting and tracking throughout the

integration effort. Also, and particular to this effort, the inventory became the source of delivery
dependency information, contact/owner information, relative priority information, and much, much more.

Because of the size and complexity of the effort, no one had ever constructed a single Gantt that all
groups could agree upon. The closest thing to it lived on the wall in the SME integration test room. But
it only covered modules in their scope, which only covered 30 percent of the project. Also, when code
delivery dates changed, there was no way to update a Gantt conclusively, nor could anyone guarantee
that all involved parties would see it.

The inventory provided a solution to this problem that ensured that delivery-driven dependencies would
be called out and noticed. We will talk about this in more detail in Chapter 7 when we discuss the
interview process.

A change management board was created and tasked with overseeing and approving each movement
of the code through the various integration test systems. Each new module passed a unit test phase
and function test phase before being accepted into the integration test phase. Three different
integration test systems were maintained throughout the effort, each one progressively cleaner and
more a mirror of the actual production environment. Integration testing was conducted using captured
production data and a past environment clock.

Because of the distributed nature of this integration effort, or perhaps simply because of the plan-driven
nature of the effort, higher reporting functions and more complex metrics were never used. Status
reporting was done using the inventory, not using the S-curves.

Summary

The methods discussed in this book provide an effective risk-based approach to software test
estimation, testing, and evaluation. This approach is called the Most Important Tests method, or MITs.
MITs gives testers a defensible set of test methods, metrics, and tools with which to accomplish their
testing tasks.

Most software testing today is conducted without benefit of formal methods or metrics. The major
distinction between a formal method and an informal method is in the measurement tools used to
accomplish the goals and the quality of the product produced. The process described in the MITs' steps
probably sounds familiar, but the end result of a test effort that does not use formal methods and
metrics like the ones described here is likely to be described in terms like "I tested i t." Testers using the
methods in this book will have much better answers than "I tested i t," and they will conduct a better test
effort in the available time and produce a higher-quality product.

One of the best things about the MITs method is that you don't have to do all the steps as I describe
them in this book, nor do you have to execute every step in the list in order to succeed. Start with the
step(s) that you (1) can use, (2) need, (3) understand, and (4) think will help; add others when it makes
sense. Be sure to select the methods that work in your particular situation. MITs helps the plan-driven
effort predict what is coming, and it helps the Agile test group retain its flexibility. So, on the
heavyweight side of development, MITs give you solid, defensible, fast ways to estimate your needs. In
the middle ground, you can quickly estimate your test needs, prioritize the requirements, promise
coverage, and provide accurate status reporting with a minimum of effort. On the lightweight side, you
can provide quick estimates and give your management the high-quality, blow-by-blow status
information that they must have to succeed.

Hopefully this chapter, with all its examples, will give you some ideas, or perhaps simply corroborate
your own experiences.

Chapter 5: Fundamental Metrics for Software
Testing

Overview

Would you hire a carpenter who did not have and would not use a tape measure? Probably not,
because the carpenter who does not use a tape measure probably will not deliver a satisfactory job.
Most people recognize readily that measuring tools are necessary to make sure that a structure is laid
out according to the plan, that the floors are level and the walls plumb. Yet we buy software to do
important work that has been developed and validated by people who do not use any type of
measurement. In this chapter, we define the fundamental metrics that will be used in the methods
described in the next chapters.

The following are some typical software testing questions that require measurement to answer:

How big is i t?

How long will it take to test i t?

How much will it cost to test i t?

What about the bugs?

How bad were they? What type were they?

What kind of bugs were found?

How many of the bugs that were found were fixed?

How many new bugs did the users find?

How much of i t has to be tested?

Will i t be ready on time?

How good were the tests?

How much did it cost to test i t?

Was the test effort adequate? Was i t worth it?

How did i t perform?

Good answers to these questions require measurement. If testers don't have good answers to these
questions, it is not because there are no applicable metrics; it's because they are not measuring.

In this chapter, we discuss the metrics available to answer each of these questions, both fundamental
and derived. The techniques used to give you good answers to questions like "How big is i t?" are
presented throughout the rest of this book; all of these techniques require measurement. In this
chapter, I introduce the units and metrics used by these techniques.

Measures and Metrics

A metric is a measure. A metric system is a set of measures that can be combined to form derived
measures-for example, the old English system of feet, pounds, and hours. These metrics can be
combined to form derived measures as in miles per hour.

Measure has been defined as "the act or process of determining extent, dimensions, etc.; especially as
determined by a standard" (Webster's New World Dictionary). If the standard is objective and concrete,
the measurements will be reproducible and meaningful. If the standard is subjective and intangible, the
measurements then will be unreproducible and meaningless. The measurement is not likely to be any
more accurate than the standard. Factors of safety can correct for some deficiencies, but they are not a
panacea.

Craft: The Link between Art and Engineering

My great-grandmother was a craftsperson. A craftsperson is the evolutionary link between art and
engineering. My great-grandmother made excellent cookies. Her recipes were developed and
continuously enhanced over her lifetime. These recipes were not written down; they lived in my great-
grandmother's head and were passed on only by word of mouth. She described the steps of the recipes
using large gestures and analogies: "mix it till your arm feels like it's going to fall off, and then mix it
some more." She guessed the temperature of the oven by feeling the heat with her hand. She
measured ingredients by description, using terms like "a lump of shortening the size of an egg," "so
many handfuls of flour," "a pinch or this or that," and "as much sugar as seems prudent."

Great-Grandmother's methods and metrics were consistent; she could have been ISO certified,
especially if the inspector had eaten any of her cookies. But her methods and metrics were local.
Success depended on the size of her hand, the size of an egg from one of her hens, and her idea of
what was prudent.

The biggest difference between an engineer and a craftsperson is measurement. The engineer does
not guess except as a last resort. The engineer measures. The engineer keeps written records of the
steps in the process that he is pursuing, along with the ingredients and their quantities. The engineer
uses standard measuring tools and metrics like the pound and the gallon or the gram and the liter. The
engineer is concerned with preserving information and communicating it on a global scale. Recipes
passed on by word of mouth using metrics like a handful of flour and a pinch of salt do not scale up well
to industrial production levels. A great deal of time is required to train someone to interpret and
translate such recipes, and these recipes are often lost because they were never written down.

Operational Definitions: Fundamental Metrics

The definition of a physical quantity is the description of the operational procedure for measuring the
quantity. For example, "the person is one and a half meters tall." We know from this definition of a
person's height by what metric system the person was measured and how to reproduce the
measurement. The magnitude of a physical quantity is specified by a number, "one and a half," and a
unit, "meters." This is the simplest and most fundamental type of measurement.

Derived units are obtained by combining metrics. For example, miles per hour, feet per second, and
dollars per pound are all derived units. These derived units are still operational definitions because the
name tells how to measure the thing.

How Metrics Develop and Gain Acceptance

If no suitable recognized standard exists, we must identify a local one and use it consistently-much like
my great-grandmother did when making her cookies. Over time, the standards will be improved.

Developing precise and invariant standards for measurement is a process of constant refinement. The
foot and the meter did not simply appear overnight. About 4,700 years ago, engineers in Egypt used
strings with knots at even intervals. They built the pyramids with these measuring strings, even though
knotted ropes may have only been accurate to 1 part in 1,000. It was not until 1875 that an international
standard was adopted for length. This standard was a bar of platinum-iridium with two fine lines etched

on it, defining the length of a foot. It was kept in the International Bureau of Weights and Measures in
Sevres, France. The precision provided by this bar was about 1 part in 10 million. By the 1950s, this
was not precise enough for work being done in scientific research and industrial instrumentation. In
1960, a new standard was introduced that precisely defined the length of the meter. The meter is
defined as exactly 1,650,763.73 times the wavelength of the orange light emitted by a pure isotope, of
mass number 86, of krypton gas. This standard can be measured more accurately than 1 part per 100
million.

Once a standard is introduced, it must still be accepted. Changing the way we do things requires an
expenditure of energy. There must be a good reason to expend that energy.

What to Measure in Software Testing

Measure the things that help you answer the questions you have to answer. The challenge with testing
metrics is that the test objects that we want to measure have multiple properties; they can be described
in many ways. For example, a software bug has properties much like a real insect: height, length,
weight, type or class (family, genus, spider, beetle, ant, etc.), color, and so on. It also has attributes,
like poisonous or nonpoisonous, flying or nonflying, vegetarian or carnivorous.[1]

I find that I can make my clearest and most convincing arguments when I stick to fundamental metrics.
For example, the number of bugs found in a test effort is not meaningful as a measure until I combine it
with the severity, type of bugs found, number of bugs fixed, and so on.

Several fundamental and derived metrics taken together provide the most valuable and complete set of
information. By combining these individual bits of data, I create information that can be used to make
decisions, and most everyone understands what I am talking about. If someone asks if the test effort
was a success, just telling him or her how many bugs we found is a very weak answer. There are many
better answers in this chapter.

Fundamental Testing Metrics: How Big Is It?

Fundamental testing metrics are the ones that can be used to answer the following questions.

How big is i t?

How long will it take to test i t?

How much will it cost to test i t?

How much will it cost to fix i t?

The question "How big is i t?" is usually answered in terms of how long it will take and how much it will
cost. These are the two most common attributes of it. We would normally estimate answers to these
questions during the planning stages of the project. These estimates are critical in sizing the test effort
and negotiating for resources and budget. A great deal of this book is dedicated to helping you make
very accurate estimates quickly. You should also calculate the actual answers to these questions when
testing is complete. You can use the comparisons to improve your future estimates.

I have heard the following fundamental metrics discounted because they are so simple, but in my
experience, they are the most useful:

Time

Cost

Tests

Bugs found by testing

We quantify "How big i t is" with these metrics. These are probably the most fundamental metrics
specific to software testing. They are listed here in order of decreasing certainty. Only time and cost are
clearly defined using standard units. Tests and bugs are complex and varied, having many properties.
They can be measured using many different units.

For example, product failures are a special class of bug-one that has migrated into production and
caused a serious problem, hence the word "failure." A product failure can be measured in terms of cost,
cost to the user, cost to fix, or cost in lost revenues. Bugs detected and removed in test are much
harder to quantify in this way.

The properties and criteria used to quantify tests and bugs are normally defined by an organization; so
they are local and they vary from project to project. In Chapters 11 through 13, I introduce path and
data analysis techniques that will help you standardize the test metric across any system or project.

Time

Units of time are used in several test metrics, for example, the time required to run a test and the time
available for the best test effort. Let's look at each of these more closely.

The Time Required to Run a Test

This measurement is absolutely required to estimate how long a test effort will need in order to perform
the tests planned. It is one of the fundamental metrics used in the test inventory and the sizing estimate
for the test effort.

The time required to conduct test setup and cleanup activities must also be considered. Setup and
cleanup activities can be estimated as part of the time required to run a test or as separate items.
Theoretically, the sum of the time required to run all the planned tests is important in estimating the
overall length of the test effort, but it must be tempered by the number of times a test will have to be
attempted before it runs successfully and reliably.

Sample Units: Generally estimated in minutes or hours per test. Also important are the number of
hours required to complete a suite of tests.

The Time Available for the Test Effort

This is usually the most firmly established and most published metric in the test effort. It is also usually
the only measurement that is consistently decreasing.

Sample Units: Generally estimated in weeks and measured in minutes.

The Cost of Testing

The cost of testing usually includes the cost of the testers' salaries, the equipment, systems, software,
and other tools. It may be quantified in terms of the cost to run a test or a test suite.

Calculating the cost of testing is straightforward if you keep good project metrics. However, it does not
offer much cost justification unless you can contrast it to a converse-for example, the cost of not
testing. Establishing the cost of not testing can be difficult or impossible. More on this later in the
chapter.

Sample Units: Currency, such as dollars; can also be measured in units of time.

Tests

We do not have an invariant, precise, internationally accepted standard unit that measures the size of a
test, but that should not stop us from benefiting from identifying and counting tests. There are many
types of tests, and they all need to be counted if the test effort is going to be measured. Techniques for
defining, estimating, and tracking the various types of test units are presented in the next several
chapters.

Tests have attributes such as quantity, size, importance or priority, and type

Sample Units (listed simplest to most complex):

A keystroke or mouse action

An SQL query

A single transaction

A complete function path traversal through the system

A function-dependent data set

Bugs

Many people claim that finding bugs is the main purpose of testing. Even though they are fairly discrete

events, bugs are often debated because there is no absolute standard in place for measuring them.

Sample Units: Severity, quantity, type, duration, distribution, and cost to find and fix. Note: Bug
distribution and the cost to find and fix are derived metrics.

Like tests, bugs also have attributes as discussed in the following sections.

Severity

Severity is a fundamental measure of a bug or a failure. Many ranking schemes exist for defining
severity. Because there is no set standard for establishing bug severity, the magnitude of the severity
of a bug is often open to debate. Table 5.1 shows the definition of the severity metrics and the ranking
criteria used in this book.

Table 5.1: Severity Metrics and Ranking Criteria

SEVERITY RANKING RANKING CRITERIA

Severity 1 Errors Program ceases meaningful operation

Severity 2 Errors Severe function error but application can continue

Severity 3 Errors Unexpected result or inconsistent operation

Severity 4 Errors Design or suggestion

Bug Type Classification

First of all, bugs are bugs; the name is applied to a huge variety of "things." Types of bugs can range
from a nuisance misunderstanding of the interface, to coding errors, to database errors, to systemic
failures, and so on.

Like severity, bug classification, or bug types, are usually defined by a local set of rules. These are
further modified by factors like reproducibility and fixability.

In a connected system, some types of bugs are system "failures," as opposed to, say, a coding error.
For example, the following bugs are caused by missing or broken connections:

Network outages.

Communications failures.

In mobile computing, individual units that are constantly connecting and disconnecting.

Integration errors.

Missing or malfunctioning components.

Timing and synchronization errors.

These bugs are actually system failures. These types of failure can, and probably will, recur in
production. Therefore, the tests that found them during the test effort test are very valuable in the
production environment. This type of bug is important in the test effectiveness metric, discussed later in
this chapter.

The Number of Bugs Found

For this metric, there are two main genres: (1) bugs found before the product ships or goes live and (2)
bugs found after-or, alternately, those bugs found by testers and those bugs found by customers. As I
have already said, this is a very weak measure until you bring it into perspective using other measures,
such as the severity of the bugs found.

The Number of Product Failures

This measurement is usually established by the users of the product and reported through customer

support. Since the customers report the failures, it is unusual for product failures that the customers
find intolerable to be ignored or discounted. If it exists, this measurement is a key indicator of past
performance and probable trouble spots in new releases. Ultimately, it is measured in money, lost
profit, increased cost to develop and support, and so on.

This is an important metric in establishing an answer to the question "Was the test effort worth it?" But,
unfortunately, in some organizations, it can be difficult for someone in the test group to get access to
this information.

Sample Units: Quantity, severity, and currency.

The Number of Bugs Testers Find per Hour: The Bug Find Rate

This is a most useful derived metric both for measuring the cost of testing and for assessing the
stability of the system. The bug find rate is closely related to the mean time between failures metric. It
can give a good indication of the stability of the system being tested. But it is not helpful if considered
by itself.

Consider Tables 5.2 and 5.3. The following statistics are taken from a case study of a shrink-wrap RAD
project. These statistics are taken from a five-week test effort conducted by consultants on new code.
These statistics are a good example of a constructive way to combine bug data, like the bug fix rate
and the cost of finding bugs, to create information.

Table 5.2: Bug Find Rates and Costs, Week 1

Bugs found/hour 5.33 bugs found/hr

Cost/bug to find $9.38/bug to find

Bugs reported/hr 3.25 bugs/hr

Cost to report $15.38/bug to report

Cost/bug find and report $24.76/bug to find and report

Table 5.3: Bug Find Rates and Costs, Week 4

Bugs found/hour 0.25 bugs found/hr

Cost/bug to find $199.79 bug to find

Bugs reported/hr 0.143 bugs/hr

Cost to report $15.38/bug to report

Cost/bug find and report $215.17 bug to find and report

Notice that the cost of reporting and tracking bugs is normally higher than the cost of finding bugs in the
early part of the test effort. This situation changes as the bug find rate drops, while the cost to report a
bug remains fairly static throughout the test effort.

By week 4, the number of bugs being found per hour has dropped significantly. It should drop as the
end of the test effort is approached. However, the cost to find each successive bug rises, since testers
must look longer to find a bug, but they are still paid by the hour.

These tables are helpful in explaining the cost of testing and in evaluating the readiness of the system
for production.

Bug Density per Unit: Where Are the Bugs Being Found?

Figure 5.1 shows the bug concentrations in four modules of a system during the system test phase. A
graph of this type is one of the simplest and most efficient tools for determining where to concentrate
development and test resources in a project.

Figure 5.1: Bug density per unit.

Bug densities should be monitored throughout the test effort. The graph presented here was used
successfully to allocate test and development resources toward the end of the test effort so that the
product could be released on time. It shows both the number of bugs and the severity of those bugs in
the four modules. Near the end of this test effort, extra programmers were assigned both to the Com
Ap, because of the number of serious bugs it had open, and the Browser Ap, because of the large
number of issues it had open.

Even though this type of chart is one of the most useful tools testers have for measuring code
worthiness, it is one of the most seldom published. There is a common fear that these metrics will be
used against someone. Care should be taken that these metrics are not misused. The highest bug
density usually resides in the newest modules, or the most experimental modules. High bug densities
do not necessarily mean that someone is doing a poor job. The important point is that there are bugs
that need to be removed.

Bug Composition: How Many of the Bugs Are Serious?

As we have just discussed, there are various classes of bugs. Some of them can be eradicated, and
some of them cannot. The most troublesome bugs are the ones that cannot be easily reproduced and
recur at random intervals. Software failures and bugs are measured by quantity and by relative severity.
Severity is usually determined by a local set of criteria, similar to the one presented in the preceding
text.

If a significant percentage of the bugs being found in testing are serious, then there is a definite risk
that the users will also find serious bugs in the shipped product. The following statistics are taken from
a case study of a shrink-wrap RAD project. Table 5.4 shows separate categories for the bugs found
and bugs reported.

Table 5.4: Relative Seriousness (Composition) of Bugs Found

ERROR
RANKING

RANKING DESCRIPTION: BUGS
FOUND

BUGS
REPORTED

Severity 1 Errors GPF or program ceases meaningful
operation

18 9

Severity 2 Errors Severe function error but application
can continue

11 11

Severity 3 Errors Unexpected result or inconsistent
operation

19 19

Severity 4 Design or suggestion 0 0

Totals 48 39

Management required that only bugs that could be reproduced were reported. This is a practice that I
discourage because it allows management and development to ignore the really hard bugs-the
unreproducible ones. These bugs are then shipped to the users. Notice that half the Severity 1 bugs
found were not reported. Inevitably, it will fall on the support group to try and isolate these problems
when the users begin to report them.

Figure 5.2 shows the graphical representation of the bugs found shown in Table 5.4

Figure 5.2: Bug distribution by severity.

The Severity 1 bugs reported represent 38 percent of all bugs found. That means that over a third of all
the bugs in the product are serious. Simply put, the probability is that one of every three bugs the user
finds in the shipped product will be serious. In this case, it is even worse than that because even if all of
the serious bugs that were reported are fixed, it is probable that at least nine (unreported) hard-to-
reproduce Severity 1 errors still exist in the product.

The Bug Fix Rate: How Many of the Bugs That Were Found Were Fixed?

There is a pervasive myth in the industry that all of the bugs found during testing are fixed before the
product is shipped. Statistics gathered between 1993 and 1994 indicate that for commercial software,
the actual bug fix rate is between 50 percent and 70 percent. Studies conducted in 1998 and 2000
showed bug fix rates of 80 percent to 85 percent in several commercial applications. Figure 5.3 shows
the cumulative errors found and errors fixed curves in the 1998 study. The gap between the two curves
at the end of the scale is the bugs that were not fixed.

Figure 5.3: Bug fix rate from 1998 study.

Many of the shipped bugs are classified as "hard to reproduce." A study of production problems
showed that two-thirds of the problems that occurred in production had been detected during the
system test. However, because the test effort had not been able to reproduce these problems or isolate
the underlying errors, the bugs had migrated into production with the system.

The risk of not shipping on time is better understood than the risk of shipping bugs that cannot be
easily reproduced or are not well understood. If a test effort finds 98 percent of all the bugs ever found
in the system but only fixes 50 percent of them, will it be a failure? If there is no estimation of the risk of
shipping these bugs, management does not have enough information to make a well-informed decision.
The pressure to ship on time becomes the overriding factor.

Metrics to Measure the Test Effort

The next metrics help measure the test effort itself, answering questions about how much was tested,
what was achieved, and how productive the effort was.

Test Coverage: How Much of It Was Tested?

Given a set of things that could be tested, test coverage is the portion that was actually tested. Test
coverage is generally presented as a percentage.

For example, 100 percent statement coverage means that all of the statements in a program were
tested. At the unit test level, test coverage is commonly used to measure statement and branch
coverage. This is an absolute measure; it is based on known countable quantities.

It is important to note that just because every statement in a group of programs that comprise a system
was tested, this does not mean that the system was tested 100 percent. Test coverage can be an
absolute measure at the unit level, but it quickly becomes a relative measure at the system level.
Relative because while there are a finite number of statement tests and branch tests in a program, the
number of tests that exist for a system is an unbounded set-for all practical purposes, an infinite set.
Just as testing can never find all the bugs in a system, neither can testers find all the tests that could
be performed on a system.

For test coverage to be a useful measurement at the system level, a list of tests must be constructed
that serves as the basis for counting the total number of tests identified for a system. We will call this
list the test inventory. (The test inventory is defined and discussed in the next chapter.) System test
coverage is then a measure of how many of the known tests in a system were exercised.

The value of this test coverage metric depends on the quality and completeness of the test inventory. A
test coverage of 100 percent of a system is only possible if the test inventory is very limited. Tom Gilb
calls this "painting the bull's-eye around the arrow."

Test Effectiveness: How Good Were the Tests?

Test effectiveness is a measure of the bug-finding ability of the test set. If a comprehensive test
inventory is constructed, it will probably be too large to exercise completely. This will be demonstrated
as we proceed through the next several chapters. The goal is to pick the smallest test set from the test
inventory that will find the most bugs while staying within the time frame. In a test effort, adequate test
coverage does not necessarily require that the test set achieve a high rate of test coverage with
respect to the test inventory.

It is usually easier to devise a comprehensive test set than it is to find the time and resources to
exercise it fully or to track resulting problems to their source. Therefore, the number of tests that could
be performed is almost always greater than the number that actually can be performed given the time
and resources available. For example, a test effort conducted with a limited test inventory may achieve
100 percent test coverage by the end of the test cycle. However, regression testing around new code
and bug fixes is usually limited in its scope because of time and resource constraints.

We can answer the question, "How good were the tests?" in several ways. One of the most common is
to answer the question in terms of the number of bugs found by the users, and the type of bugs they
were.

The bug-finding effectiveness of the test set can be measured by taking the ratio of the number of bugs
found by the test set to the total bugs found in the product.

An effective test suite will maximize the number of bugs found during the test effort. We also want this

test suite to be the smallest test set from the inventory that will accomplish this goal. This approach
yields the highest test effectiveness (most bugs found) and highest test efficiency (least effort,
expense, or waste). For example, if the test coverage of a system test suite covers only 50 percent of
the test inventory but it finds 98 percent of all the bugs ever found in the system, then it probably
provided adequate test coverage. The point is, the tests in the suite were the right 50 percent of the
inventory-the most important tests. These tests found most of the bugs that were important to the user
community. The benefits of increasing the test coverage for this system would be minimal.

Test effectiveness only measures the percentage of bugs that the test effort found. Some bugs will be
found by both the testers and the users. These are only counted once. The test effectiveness metric
differs from the performance metric, which I will introduce in a moment, in that effectiveness only
counts found bugs and is not concerned with whether or not these bugs are ever fixed. Since most
managers expect the test effort to result in bugs being removed from the product, the performance
metric is what they want to see because it is concerned with the percentage of bugs that were found
and fixed.

Test effectiveness is valuable when you are evaluating the quality of the test set. I use it as one of the
selection criteria when I am distilling a test set that is a candidate for becoming a part of a production
diagnostic suite. All the tests that I run during a test effort are part of the most important tests suite. The
subset of these most important tests that can discover a failure are valuable indeed.

To select this subset, I use test effectiveness in conjunction with a certain class of bugs that I call
failures. Failures are bugs that can recur even after they appear to have been fixed. (See the examples
listed under the section Bug Type Classification earlier in the chapter.)

This failure-finding subset of the most important tests can provide years of value in the production
environment as a diagnostics suite, especially if these tests are automated tests. Over the years, test
suites that my team developed to test various systems and software products have been incorporated
into basis suites used in real-time system monitoring, disaster recovery validation and verification, and
real-time problem identification.

When the test effort can identify this test set and instantiate it in the production environment, the
testers are delivering a very good return on the test investment. Some of my diagnostics suites have
run for years in production environments with few changes. Often these tests are still running long after
the original coding of the application or system has been retired.

Metrics to Track Testing: Will It Be Ready on Time?

The following set of derived metrics are used to track the test effort and judge the readiness of the
product. By themselves, these metrics are not always helpful. They are extremely valuable in answering
questions such as, "Are we on schedule?" and "Have we tested enough?" when they are used in
conjunction with S-curves.

The number of tests attempted by a given time

The number of tests that passed by a given time

The number of bugs that were found by a given time

The number of bugs that were fixed by a given time

The average time between failures

How Much Did It Cost to Test It?

When you use the Most Important Tests method, it is possible to show management how big it is and
what a given level of test coverage will require in time and resources. From this basis, it is possible to
calculate cost. These techniques are very useful in the test estimation phase. S-curves can help you
stay on track during the testing phase, and performance metrics can help you determine the actual cost
of testing and what you got for the effort.

Calculating the cost of the effort afterward is one of the simplest of all the metrics in this chapter, even
though it may have several components. It is very useful in make a comparative case to get enough

budget-next time.

Metrics to Measure Performance: Was It Worth It?

Note Today, you have to show management that it was worth it.

Not only does the test effort have to provide proof of its performance, it also needs to show that it adds
enough value to the product to justify its budget. The performance of the test effort can be most
accurately measured at the end of the life of a release. This makes it difficult to justify an ongoing test
effort. Constant measurement by testers is the key to demonstrating performance.

Performance is (1) the act of performing, for instance, execution, accomplishment, fulfillment, and so
on; and (2) operation or functioning, usually with regard to effectiveness.

The goal of the test effort is to minimize the number of bugs that the users find in the product. We
accomplish this goal by finding and removing bugs before the product is shipped to the users. The
performance of the test effort is based on the ratio of the total bugs found and fixed during test to all the
bugs ever found in the system.

The performance of the last test effort, including its test coverage, bug fix rate, and the number of
serious bugs that occurred or required fixes in the shipped product, are all used to evaluate the
adequacy of the test effort. The cost of the test effort and the cost of the bugs found in production are
also considered.

We measure to formulate theories capable of prediction. Next, we measure the results to determine the
correctness of the predictions and then adjust the predictions for the next time. To evaluate the
accuracy of predictions about the requirements of an adequate test effort, we need to examine several
metrics.

This information can be used to adjust test coverage and bug fix requirements on the next release. For
example, two test efforts conducted on similarly sized client server applications had the performance
statistics shown in Table 5.5. Management determined, based on the number of calls to customer
support, that the test effort for Case 1 was more than adequate, while the test effort for Case 2 was
found to be inadequate.

Table 5.5: Determining If the Test Effort Was Adequate

TEST
COVERAGE

AVG.
CALLS TO
CUSTOMER
SERVICE
PER
LICENSE IN
FIRST 90
DAYS

BUG
FIX
RATE

PERFORMANCE
RATIO (6 MO.
AFTER
RELEASE)

SEVERITY 1
BUGS
REPORTED
IN
PRODUCTION

SEVERITY 2
BUGS
REPORTED
IN
PRODUCTION

CASE STUDY 1

67% 5 70% 98% 0 6

CASE STUDY 2

100% 30 50% 75% 7 19

Severity 1 = Most serious bugs Severity 2 = Serious bugs

One of the problems in Case Study 2 is that the test inventory was probably insufficient. When a poor
test inventory is coupled with a low bug fix rate, the result will be a marked increase in the number of
calls to customer support and a reportedly higher rate of customer dissatisfaction.

It is necessary to distinguish between the adequacy of the test effort as a whole and the adequacy of

the test coverage, because many of the problems that occur in production environments actually
occurred during the test cycle. In other words, the bugs were triggered by the test set, but the bugs
were not fixed during the test effort and consequently were shipped with the product.

The challenge here is that traditional test efforts cannot remove bugs directly. I have already talked
about the management tools "argument" and "persuasion." The current trend is toward find-and-fix.

The Cost of Not Testing: How Much Did Testing Save?

As I mentioned already, this metric is very useful as a point of comparison, but very difficult to establish.
The preceding case studies are good examples of how to limp around this problem. I have had the
opportunity to conduct a couple of forensic studies in recent years, and I am convinced that the cost of
not testing is profound, but because a product failure is such a sensitive issue, I have never been in a
position to safely publish any details. It is a common managerial foil to portray a complete debacle as
an overwhelming success and move right along to the next project-such are the ways of politics. If you
have been involved in a failed product, you have probably experienced this phenomenon firsthand.

You can compare the cost of fixing a bug found in testing to the cost of fixing a bug in the shipped
product. I have had some luck in recent years showing that my test effort had a positive cost-benefit
ratio using this technique, but it requires intimate knowledge of the customer support process and the
ability to track costs in the support area and the development area.

Testing never finds and removes all the bugs in a product. Testing only reduces the number of bugs
and the risk of serious errors in the shipped product. If you keep good records, over time you can
predict the percentage of certain classes of bugs that the test effort will find and remove. These
percentages are also helpful in estimating the cost of not testing.

Other Contributions of the Test Effort

The test effort contributes other valuable things besides the finding of bugs. Testing collateral can
provide several valuable resources to production, customer service, and the customers themselves.

I already mentioned the diagnostics suites for production. Installation instructions are another normal
product of the test effort; they may be applicable to operations in the case of a system or to the end
users in the case of a software product. Since the testers are the first expert users of the system, they
are an invaluable asset to customer support in researching, explaining, and resolving customer issues.

Finally, since testers are the first expert users of a product, their questions, working notes, and
instructions usually form the foundation of the user guide and seed for frequently asked questions
documentation. It is a sad waste when the documentation creation process does not take advantage of
this resource.
[1]There are well-defined quantified metrics and metrics systems available today in software testing.
Unfortunately, many of these metrics are not fundamental measures; they are complex and often
obscure. Function points [Jones 1995] and McCabe's Complexity [McCabe 1989] are examples. It is
not immediately apparent from these names how to use these metrics, what they measure, or what
benefits they offer. Special knowledge is required. Acquiring this knowledge requires an expenditure of
time and resources. It is probably unreasonable to expect that practitioners can transition directly from
no metrics to complex metrics.

Summary

Time, cost, tests, bugs, and failures are some of the fundamental metrics specific to software testing.
Derived test metrics can be made by combining these fundamental metrics. The problem is, only time
and cost are clearly defined by standard units. Tests, bugs, and failures are usually defined locally-that
is, much like grandmother's cookies, their definitions are local and only exist inside the organization.

In this chapter, I have introduced fundamental metrics that you can use to answer the questions:

How big is i t?

How long will it take to test i t?

How good were our tests? (test effectiveness)

How many new bugs did the users find?

How many of the bugs that were found were fixed? (the bug fix rate)

Was the test effort adequate? (I do this by looking at a set of test measurements.)

In addition, I have provided information on the following:

The bug find rate

Bug density per unit

Bug composition

The bug fix rate

Most of these metrics are simple sums of events. Cumulative results like these should be accumulated
over time and examined carefully for trends. I use these cumulative trends to show the big picture and
predict the answers to other questions that need to be answered, such as:

Are we on schedule?

Have we tested i t enough?

There are many other questions that you can answer using these metrics as well. In the meantime,
would you hire a tester who could not or would not measure the test effort?

Chapter 6: The Test Inventory

Overview

"Using a list (posted on the refrigerator) reduced my grocery bill by 23 percent In addition,
I haven't run out of anything important since I started using it, which means no emergency
runs to the grocery store. Finally, everyone in the house is much happier because the
things that they want are here too."

Marnie L. Hutcheson

In this chapter I talk about methods for answering the questions "What are you going to test?", "What
did you test?", and perhaps more importantly, "How big is it?"-because that is the question that gets
asked the most. The auditors ask the first two questions; management asks the third. You can't get
budget without a good answer to the question, "How big is it?"

The test inventory is a major component of a successful test effort. In this chapter, I introduce the test
inventory and discuss how an inventory is used in preparing an estimate for a test effort and what types
of items go in the test inventory. We'll also look at how the test inventory helps you conduct an
adequate test effort and how it answers the question about how big it is. This process is continued
through the next chapters.

Project management uses task lists to keep track of things that need doing. Test scripts are similar to
tasks, but the two are not quite the same. The biggest difference is that whereas a task gets completed
once, a test may be repeated many times. And this fact means that testing can be trickier to manage
than a standard project.

The Goal: A Successful Test Effort

The goal of testing is a successful test effort, but what is a successful test effort? One that finds bugs?
Finding bugs alone does not make a successful test effort. The successful test effort will also ensure
that the bugs are removed, and it will probably introduce several improvements.

Note The goal of the test effort is to establish a responsive, dependable system in the shortest
possible time that satisfies and delights the users while staying within budget, schedule, and
resource constraints.

The successful test effort involves several activities in addition to testing the system and finding bugs.
Most of these other activities have to do with getting the bugs removed. Testers must perform
diagnostics, write bug reports, and track status on the failures that occur during testing; then they must
secure, integrate, and verify the fixes. The successful test effort will also complete its test activities in
the allotted time. Any plan or estimate that does not take all of these factors into consideration will
probably fail, because the failure of any of these activities can cause the entire test effort to fail.

During planning, the potential consequences of a failure in the product and eventually its cost must be
balanced against the size and completeness (and cost) of the test effort. Testers need to select a test
set that provides the best test coverage for the given time frame. In other words, testers must identify
and execute the most important tests.

The tester must be able to communicate the size, complexity, priorities, and underlying assumptions of
the test effort during planning, because that is when the schedule is established. If the testers cannot
communicate these things clearly and adequately, management will not be able to make well-informed
decisions about resource allocations and time frames.

Once testing begins, in addition to producing results reports, testers need to be able to calculate, at any
time, how much time is required to complete the planned testing and bug-fix integration activities so
they can communicate the impact of events on the schedule and adjust planned activities to control the
situation. They need to get the job done in a systematic and reproducible way. This goal of a successful
test effort cannot be met without a good plan and measurements.

Management must participate in planning and in building the test agreement. They must actively
participate in discussions about what will be tested and what will be fixed, and they must allocate
enough of the right resources to get the job done. This means enough time, testers, and test machines
to execute the test agreement, and enough programmers to find and fix the bugs within the time
allotted for the test cycle.

Management must also recognize that the test scripts are at least as valuable as the source code that
they test and they must promote test reuse. This can be accomplished by setting the expectation that
test resources will be reused, not only in subsequent releases but as diagnostics and basis suites.
Basis and diagnostic test suites should also be shared with other groups.

Planning for Adequate Testing: How Much Is Enough?

Test coverage is the percentage of all the known tests that were actually attempted and completed. It
can be used to answer the question, "How much did we test?" To calculate what percentage of the
whole you have accomplished, you must have some idea how big i t is. We use a test inventory to
answer the question, "How big is i t?"

Unfortunately, most test coverage in commercial software today seems to be estimated by gut feel.
When the question is asked, "Did we test enough?", the answer is often along the lines of, "Well, we
haven't found any bugs for a while; i t's probably okay." This is part of the I-feel-lucky approach.

To make an objective and quantitative answer to the "Did we test enough?" question, a tester must first
have made an estimate of how much there is to test. In my workshops, I ask how many testers build a
list of all the things there are to test in a given system. Perhaps 1 tester in 30 reports regularly building
such a list. Most testers report that they just start testing. If no one measured how much there was to
test, then no one would ever know how much of i t was tested. This is the "ignorance-is-bliss" corollary
to the I-feel-lucky approach.

These testers always know that they did not test everything; but since they do not know exactly how
much they did not test, they can rationalize at least temporarily that they tested enough. Even though
enough testing is more a function of testing the right things than testing everything, we must have some
idea how big the project is. This topic is discussed in detail later in this chapter (see Using Historical
Data in Estimating Effort).

Planning for an Adequate Test Effort

Studies of production problems that I conducted in 1993 and 1994 showed that 80 to 90 percent of the
bugs found in production were encountered during testing. About 60 percent of these bugs were
difficult to reproduce. The test effort did not have sufficient resources to track those bugs down and get
them fixed. Test coverage was sufficient, but the test effort was not. As mentioned in an earlier chapter,
one of the myths in the software industry is that we always fix every bug we find. While this is generally
true in safety-critical systems, it is not the case in most commercial software. A test effort does not
usually fail because bugs went undetected but because an unacceptable number of bugs were shipped
with the product.

In many cases, the main reason that these bugs can be hard to reproduce is that they only exist in
certain environments-that is, they are not in the software being tested but in other supporting software
in the system. How can a software maker be held responsible for bugs in someone else's screen driver
or printer driver program? On the other hand, how is a normal user or an average tester supposed to
recognize that the reason a machine locks up sometimes when he or she selects a graphing function in
the word processor is a defect in a certain screen driver?

Another reason that some bugs are hard to reproduce is that the systems where the software is running
are large, multiuser systems. These are not finite state machines. Our software systems are complex,
event-driven societies of interactive applications. For example, the tester is listening to her favorite CD
on her PC while using her LAN-connected Internet browser to do research for the paper she is writing
on her word processor, and both the word processor and the browser are open on the screen. In
addition to the operating system, there are a variety of drivers, like the mouse, video, memory, fax, and
the CD, running on the windowing operating system concurrently. The system locks up and the screen
goes black when the fax tries to answer an incoming call. Generally duplicating or even completely
documenting the actual state of such a system when the fatal event occurs is impossible, even when
the system in question is a single standalone machine, let alone when it exists in a network.
Consequently, re-creating the exact state(s) that existed in one of these systems at the moment a
failure occurred is generally impossible.

Testers alone cannot hope to catalog and control today's complex environments; development must
take a proactive approach to making the product testable. Studies have shown that a significant
percentage of production problems have been hard to reproduce because there are insufficient
diagnostics in the environment, or misleading or erroneous error messages have been displayed when
the bugs occurred. Good defensive programming and rich environmental diagnostics are required in

order to isolate these bugs. In some cases, the best fix possible is simply a notice that explains a bug
that might happen. In any case, if the test effort fails to get enough bugs fixed, it will be judged a failure.

Just as the creation of the developer is the code that performs the functions in the product, the creation
of the tester is tests that demonstrate the reliability of the product. The testers want to create the most
bug-free product possible. The tester's frustration is that he or she cannot usually fix the bugs found.
The developers must be persuaded to do it-in some cases, third-party developers. Sound test methods
and good measurements are critical. They are the basis of all persuasive efforts with development and
management, as well as the professional credibility of the testers. Without good measurements to give
management a clear idea of the importance and possible impact of these hard-to-reproduce bugs, it will
be difficult to convince them to spend money and possibly slip delivery dates to hunt for them.

The point here is that test coverage alone is not enough to ensure a successful test effort. There are
two parts to the successful test effort: adequate test coverage and an adequate test effort. Both parts
must be considered in the planning process.

The most effective way to determine if the test coverage is adequate is by measuring. Worksheets are
an excellent tool to aid you in accumulating the measurements and applying factors of safety for
various tests and related tasks. I use worksheets both for estimating the resource requirements for the
test effort and for keeping track of the actual counts during the test effort. I also use them to measure
the actual performance of the test effort after the product has been deployed. This performance
measurement provides the basis of the factor of safety that I will be applying to correct the worksheet
estimates of the next test effort.

The remainder of this chapter deals with building the test inventory, which is the basis of the worksheet.
Each of the next three chapters deals with techniques necessary to flesh out the worksheet and the
test inventory. I discuss techniques for automating the creation and maintenance of the worksheet, as
well as the calculations on the worksheet, throughout.

Determining the Scope of Testing: How Big Is It?

Antonio Stradivari (1644-1737), better known to most of us as Stradivarius, made some of the finest
and most prized violins and violas in the world today. Stradivari was a master craftsman; he had a
special knack for understanding the properties, strengths, and weaknesses of a piece of wood. He
measured the quality of his materials and craftsmanship by his senses. It is said that he could examine
a piece of wood and know just by looking at it, touching it, and listening to the sound it made when he
knocked on it what its best use would be. But for all the master's art and craftsmanship, when it came
to doing a complete job and managing his efforts, he relied on lists.

We know that he did so because when he was through with a list, he reused the paper the list was
written on, which was too valuable to be thrown away, to reinforce the inside joints of his instruments.
At that time, all craftsmen were trained to keep lists. These lists might be used to satisfy a benefactor
that their funds were well spent or the craft guild if the craftsman was called to make an accounting.
Much of what we know of many of the masters' arts and lives comes from handwritten lists found
reinforcing the insides of the fine instruments and furniture they created.

An inventory is a detailed list. An inventory of all the tasks associated with a project, such as all the
tests identified for a test effort, is the basis for answering such questions as, "How long will it take to
accomplish everything on the list?" In a test effort, how big? is best answered in terms of how much?,
how many?, and most importantly, how long? The inventory then becomes the basis of an agreement
between parties, or a contract for accomplishing the project. We will postpone the discussion of the test
agreement or test plan until later. For now, consider the test inventory only as a means of answering
the question, "How big is i t?"

The test inventory is the complete enumeration of all tests, of all types, that have been defined for the
system being tested. For example, the inventory for a typical end-to-end system test effort will include
path tests, data tests, module tests, both old and new user scenarios (function tests), installation tests,
environment tests, configuration tests, tests designed to ensure the completeness of the system,
requirements verification, and so on.

The inventory can be organized in any way that is useful, but it must be as comprehensive as possible.
It is normal and healthy that the inventory grow during the test effort. The inventory is dynamic, not
static. It evolves with the system. When a test inventory is used, the test coverage metric can be used
to measure many types of testing, such as function or specification coverage.

Test Units

The much-defamed LOC (lines of code) metric is crude, rather like that knotted string the Egyptians
used that we will discuss in Chapter 11. Its biggest problem is that it is not uniform. There is no
equivalence between a line of C code and a line of Ada, Pascal, or Basic. But it is better than no
measure at all.

How do you measure a test? If I say, "How many tests are in this test effort?", do you think of mouse
clicks, or long scripts composed of many keystrokes and mouse clicks, or huge data files that will be
processed? Clearly, a test is a measure of the size of the test effort. But, like LOC, it is only useful if
there is a way to normalize the way we measure a test.

Unfortunately, there is no standard definition of the word test. The IEEE defines test as a set of one or
more test cases. This definition implies multiple verifications in each test. Using this definition, if we say
that one test effort requires 1,000 tests and another requires 132 tests, the measure is totally
ambiguous because we have no idea what a test entails. In fact, a test is performed each time a tester
compares a single outcome to a standard, often called an expected response. In today's test lab, a test
is an item or event that is verified, where the outcome is compared to a standard. A test case or test
script is a set of tests, usually performed in some sequence and related to some larger action or
software function. A test suite is a set of test scripts or test cases. Test cases in a test suite are usually
related and organized to verify a more complex set of functions.

If a tester performs many steps before performing a verification, and if the comparison of the actual
outcome to the expected outcome fails, the entire set of steps will have to be repeated in order to

repeat the test. At Microsoft I observed that, except for simple text entry, almost every keystroke or
mouse action was considered to be a test, meaning it was verified individually. When the definition of a
test is this granular, the test inventory is going to be very comprehensive, at least as far as function test
coverage is concerned. This degree of granularity is necessary not only for good test coverage; it is
essential if the goal is to create robust test automation. I am not saying that we should plan to
rigorously verify the result of every single keystroke in every single scenario. That level of verification
may or may not be necessary or cost-effective. I am saying that we need to count every single
keystroke or system stimuli that can be verified and make sure that each one is included in the test
inventory.

One Test Script: Many Types of Tests

System testing is usually conducted once the entire system is integrated and can be tested from "end
to end." Even though this part of a test effort is often called a systems test or end-to-end test, there are
different types of test activities being performed. Statement execution is the focus of unit testing. But
statement execution is the result of the user's actions, like keystrokes or mouse clicks during the
higher-level tests as well. Behind every system response there are internal and possibly external
module, component, and device responses. Any of these responses could be verified and validated. A
single user or system input could require multiple layers of verification and validation at many levels of
the system. These tests are all different tests even though they may all be generated by the same test
script, and they may or may not all be verified and validated each time the test script is attempted.

The function tester is generally concerned with verifying that the system functions correctly from the
user's perspective. The function tester cannot usually perform verification of internal system processes,
only the outcomes or actual results visible to a normal user. This type of testing is called black box
testing or behavioral testing. The task of verifying internal, often invisible, system processes generally
falls to the system testers. System testing may use the same system stimuli as the function test-that is,
the same test script, database, and so on-but what is verified as a result of the stimuli is different.
System testing usually delves into the internal system response to the stimuli.

For the number of tests to have meaning as a sizing metric, there must be some way to normalize the
way we measure a test. One important attribute that all tests have in common is the time required to
conduct the test. The total time required to conduct all the tests in the inventory is an important
measurement in estimating the test effort.

The function tester and the system tester may use the same keystrokes to stimulate the system, but the
tests may take very different amounts of time to complete because the verification being performed is
very different. The function tester uses the next screen he or she receives to verify the test. The system
tester may have to evaluate the contents of systems log files and trapped events. Verification and
validation at this low level takes a lot more time than verification from the user interface.

Low-level system verification requires a highly technical tester. Because this type of testing is difficult,
time-consuming, and expensive, the trend has been to do less and less of it. After all, if the system
appears to be sending the correct response to the user, why look any further? This argument has been
used to justify the current top-down approach to system testing. The problem is the really tough,
expensive bugs often live in these low-level areas. For example, a bug may only affect 3 percent of the
users. Sounds OK, right? But what if those 3 percent happen to be those users who have over $10
million being managed by the system?

Using Historical Data in Estimating Effort

Historical data from a test effort that is similar to the one being estimated can provide a factual basis for
predictions. However, even if the time required to conduct two test efforts is known, it is not possible to
compare two test efforts and say which was more productive unless there is some additional basis for
comparison. It is possible to establish a working basis of comparison by considering similar sets of
measurements about each test effort. Consider the sample application data in Table 6.1.

Table 6.1: Comparison of Two Releases of the Same Application

ITEM RELEASE 1M RELEASE 1A

Number of test scripts (actual)1. 1,000 132

Total user functions identified
in the release (actual)

2. 236 236

Number of verifications/test
script (average actual)

3. 1 50

Total verifications performed4. 1,000 6,600

Average number of times a
test was executed during the
test cycle

5. 1.15 5

Number of tests attempted by
the end of the test cycle
(theoretical)

6. 1,150 33,000

Average duration of a test
(known averages)

7. 20 min. 4 min.

Total time required to run the tests
(from project logs)

383 hrs. 100 hrs.

Total verifications/hr. of testing
(efficiency)

(1,000/383) = 2.6 (6,600/100) = 66

Definition of a test Verification occurs
after a user function is
executed

Verification occurs after
each user action required to
execute a function

A function in Release 1M is roughly equivalent to a function in Release 1A. They are two consecutive
releases of the same application, differing only by some bug fixes. At first glance, the test set for
Release 1M appears to be more comprehensive than the test set for Release 1A. This is not the case,
however. The Release 1M statistics are from the original manual test effort. Release 1A was the
automated version of the tests from Release 1M. When the test estimation for Release 1A was
performed, all the tests from Release 1M were included in the test inventory. The test analysis showed
there were many redundancies in the tests from Release 1M. These were largely removed, and new
tests were added to the inventory based on the path and data analysis. [1] The values in the table
marked theoretical were calculated values.

Efficiency is the work done (output) divided by the energy required to produce the work (input). In this
example, the efficiency of Release 1A is 66 verifications per hour, while the efficiency of Release 1M
was 2.6 verifications per hour. The efficiency of the tests in Release 1A in terms of verifications was
roughly 25 times (66/2.6) greater than Release 1M.

Cost is the inverse of efficiency. Cost in this case will be measured in units of time per test, that is, the
time per verification performed and the time per function tested. It took (383/236) or 1.6 hours to verify
a function in Release 1M, while it took (100/236 = 0.42 hours) or about 25 minutes to verify a function in
Release 1A. Verifying the 236 functions in Release 1A cost about one-quarter the time as Release 1M.
This improvement was due to the introduction of automation tools.

These types of cost and efficiency comparisons are dependent on the assumption that the program
functions are similar. A program function in firmware is very different from a program function in a piece
of windowing software. Program functions are similar from one release of a product to the next.
Comparison of tests and test efficiency is most useful when you are planning for a subsequent release
when functions will be fairly similar. Such comparisons can also be made between similar applications
written in the same language.

Another measure of efficiency is the number of bugs found per test or per test-hour. If it is not possible
to establish equivalence, it is still possible to measure the time required to perform the tests and use
this measurement to make predictions about regression testing and other similar tests. "How long will it

take?" and "How much will it cost?" are two questions for which testers need to have good answers.
Using this approach, we can say:

1. The overall size of the test inventory is equal to the number of tests that have been identified
for the project. (This is how big it is.)

It does not matter that the true set of tests that exists for the project is unbounded, that is to say,
virtually infinite. The techniques discussed in the next chapters are used to cut that number down to
some still large but manageable number. Care must be taken that the test inventory includes at least
minimum items discussed in the following chapters. If the test inventory is poor, incomplete, or simply
too shallow, the resultant test effort will be unsatisfactory even if test coverage is 100 percent.

2. The size of the test set is the number of tests that will actually be executed to completion.

This is the number of tests that must pass in order for testing to be considered complete. The test
coverage that this effort achieves is the fraction of test items from the test inventory that will actually be
executed until they are successful. As stated previously, we want this subset of all the tests that have
been identified to be the most important tests from the inventory.

3. The size of the test effort will include all test activities undertaken to successfully execute the
test set.

The time required to accomplish the test effort can be estimated based on the total time required to
plan, analyze, and execute tests; report, negotiate and track bugs; and retest fixes on the tests that will
be run. A worksheet presented in Chapter 11, "Path Analysis," is used to total the time required for
each of these tasks.

4. The cost of the test effort can be estimated based on the time and resources required to
perform an adequate test effort.

This seems too simplistic to mention, but it has been my experience that the budget for the test effort is
rarely determined in this way, by adding up predicted costs. It seems that the most popular method of
estimating the cost of the test effort goes something like this:

Pick a delivery date.1.

Estimate the date when the code should be turned over to test.2.

Subtract Step 2 from Step 1. This is the number of days available for testing. [2]3.

Multiply the days available for testing by the cost per hour and the number of testers that can be
spared for the effort.

4.

This method totally ignores the goal of an adequate test effort. Testers are somehow expected to get i t
tested in some arbitrary number of days. When the users start reporting bugs in the product,
management immediately asks, "Why didn't you test i t?"

When I became an engineer, my first manager told me, "You have to manage your management." She
was absolutely correct. The way I manage management who are using this approach to figuring the
budget is to show them exactly what they can get for their money-and what they will not get. If they
eventually discover that they did not get enough, it is their problem.

In commercial software testing, this method is sufficient and I have done my job. If management
chooses to ignore my professional estimate of what is required to perform an adequate test effort, so
be it. I will work with whatever they leave me, being sure all the while that they understand what they
are choosing not to test. In high-reliability and safety-critical software, the situation cannot be handled
so casually. Whatever form the engineer's protestations or advisements may take, they must be
documented. Such documentation is the tester's best defense against the charge that the efforts were
inadequate.
[1]In this case, the time required to create the automated tests is factored into the total of 100 hours.

[2]I will resist commenting here on what happens if this is a negative number.

Reasons for Using an Inventory

Testing without a test inventory is like going to the grocery store without a list. The shopper will
probably proceed by walking down each aisle and examining each item on the shelves in order to make
a determination. Do I need this or not? Can I afford it? Will it fit in the basket? This continues until the
shopper runs out of time, money, or energy. At that point, the shopper hurries through the rest of the
store to the checkout, perhaps collecting a couple more items on the way. Let's assume that the
shopper can afford to pay the bill. It's likely that when the shopper arrives at home, he will discover that
he did not get certain items that he really needed, like milk or bread, which means he will have to make
an unscheduled return trip to the store or do without. There is also a good chance that he made some
impulse purchases, like toffee pecan ice cream, and some duplicate purchases, like another jar of
green olives when he already has three in the cupboard.

An effective and efficient trip to the grocery store begins with a good list and a budget. Ideally, the
shopper arrives at the store in plenty of time to get the job done. The efficient shopper will proceed on
some systematic path through the store, usually aisle by aisle, finding the items on the list, checking the
price, and reviewing the other offerings as well. This is how we find things we needed that were not on
our list, and this is how we discover new items. "On my way down the exotic foods aisle, I saw this new
fajita marinade and thought it sounded good. Let's give it a try."

If time is short, the efficient shopper will try to plot a path that will minimize the time required to acquire
the items on the list and ensure that he does not have to double back to get any items on the list.

Because of the way software development works, software testers do not usually get in the store until
just before it is going to close. All the experts agree that using a list is the most efficient way to do the
shopping, but only 1 tester in 30 reports that he prepares a list of the tests that he thinks could be
performed, or all the tests that should be performed.

Using a list helps minimize the mistakes that we can make because something was forgotten, and it
reduces the waste of unnecessary purchases. How good the list is depends on how carefully the
cupboards were reviewed during its preparation. The most comprehensive and therefore the best list is
the public list posted on the refrigerator, where everyone can add to it.

As good as all these reasons are for using an inventory, they are not the main reason that I use test
inventories.

Note The main reason that I use test inventories is that they protect me, the tester.

If I tested everything on the list and the project failed, I have still performed my part of the agreement.
This is part of project management, engineering practice, and contract law. I can show clearly what I
plan to do and not do, what I have and have not done. If management or any other party sees
something amiss, they are required to say so, or they will carry a share of the blame later. If the
scheduled time has to be shortened, I can ensure that whatever time is available is spent testing the
most critical items. But I am not responsible for completing an effort if agreed upon time or resources
were not available.

I make management aware of every test that they are choosing to forego if they choose to downsize
the test effort, or if they choose to forego the systematic approach and go with a purely ad hoc effort.
Have you ever heard management say something like, "Of course you can finish it. I will give you 10
folks from editorial. They can test i t in no time." (It indeed.) On the surface, this may seem like a good
idea, but it is one of the poorest solutions available. There probably is not any time budgeted to train
these newly designated testers on how to test or how to follow a test plan. The odds are that the test
effort will quickly degenerate into an ad hoc free-for-all. The good folks from editorial will not be sure
how to reproduce most of the bugs that they find. Development will probably return their bug reports as
"unreproducible," and the real testers will lose a lot of time chasing chimera when they could have been
performing meaningful testing.

Note I do not write test plans anymore; I write a contract to test.

I started writing contracts to test long before I started testing as a consultant. It is too easy for a test
plan to be ignored and forgotten. In a commercial software shop, the testers are usually the first ones

shot when the product fails. It is not so easy to shoot testers who are holding an agreement that
management signed and then chose to ignore when deadlines approached.

The Sources of the Tests on the Inventory

Tests on the inventory can and should come from a number of sources, like the complete grocery list
on the refrigerator door. The tests can target any part of the system and can range from high-level user
functions to low-level system tests. The following are some of the most common sources of tests in the
inventory:

Requirements

Analytical analysis techniques

Inspections, reviews, and walk-throughs

Paths analysis

Data analysis

Environment catalog

Usage statistics

Nonanalytical techniques

Tests Based on Requirements

One of the first sources of tests for the test effort should be the requirements. If you can establish the
relative priorities of the requirements, then it helps greatly in establishing the rank of the tests that are
designed to verify the requirements and the amount of test coverage that will be provided. Ranking
provides a valuable tool for designers and developers to pass on their knowledge and assumptions of
the relative importance of various features in the system. More on this when we discuss how I build a
test inventory in Chapter 7, "How to Build a Test Inventory."

Analytical Methods

These are tests determined through systematic analysis of the system requirements, user
requirements, design documents and code, or the system itself. There are many types of analysis
techniques and methods. The following are the ones I have found most useful:

Inspections, reviews, and walk-throughs

Paths analysis

Data analysis

Environment catalog

Usage statistics

Inspections, Reviews, and Walk-throughs

Inspection, reviews, and walk-throughs are all used to test the accuracy of paper documentation. Paper
is also the medium currently used to store and communicate those ideas. Many of the defects
discovered in paper documentation are related to paper and the limitations of paper-dependent
processes, not fuzzy or incorrect human logic.

"The Horses for Courses Principle: Use walk-throughs for training, reviews for
consensus, but use Inspections to improve the quality of the document and its
process."-From Software Inspection by Tom Gilb and Dorothy Graham.

Inspections

Inspection, with a capital I, is a formal technique used to test project documentation for defects and
measure what is found. It is currently acknowledged to be the most effective method of finding and
removing defects. Issues logged against the documentation through inspections are usually resolved
before they can become bugs in the product. Testers do not necessarily have access to the Inspection
results, unless testers hold their own Inspection (which is a very good idea). Ideally, all test documents,
plans, the test inventory, and so on will be inspected by a team that includes both testers and
developers.

Inspections do not generate tests that will be run against the system. Tom Gilb, noted author and
management practice guru, says that "inspection is a testing process that tests ideas which model a
system." Inspections are used to measure and improve the quality of the paper documentation, or the
ideas expressed in it.

Reviews

Reviews, also called peer reviews, are usually conducted on project documentation early in the
development cycle. The reviewers evaluate the contents of the documents from various groups. Each
reviewer has his or her own perspective, expectations, and knowledge base.

A review is probably the best opportunity to publish assumptions for general scrutiny. Reviews are very
good at uncovering possible logic flaws, unaddressed logic paths, and dependencies. All of these
things will require testing. Tests determined through reviews can be added to the test inventory in the
same way as any other tests. Typically, though, reviews, like inspections, are conducted on the paper
documentation of a project.

Walk-throughs

Walk-throughs are usually group sessions that trace processes, both existing and proposed, in order to
educate everyone of the current thinking. The documentation used in a walk-through may be high-level
logic flows (bubbles on a foil or a whiteboard). Walk-throughs are also sources of tests for the test
inventory.

In a RAD/Agile effort, the design and requirements may not be written down, but they can and are
reviewed nonetheless. Some examples of non-paper documentation techniques that describe the way
the system will work include story actors, metaphors, and day-in-the-life scenarios. These oral versions
of the design and requirements of the project are continuously evolving and undergo continuous review
under the scrutiny of the group. Many types of RAD/Agile efforts use reviewing techniques similar to
those described previously to consider the way a software product will work or how a logic process will
progress.

Path Analysis

There are many published techniques for conducting path analysis and path testing, also called white
box testing. This type of analysis is systematic and quantifiable. Chapters 11 and 12 discuss the topic
at length.

Data Analysis

There are many techniques published for conducting data analysis and data testing, also called black
box testing and behavioral testing. This type of analysis is systematic and quantifiable. Chapter 13,
"Data Analysis Techniques," discusses the topic.

Environment Catalog

The possible combinations and permutations of hardware and software environments in which a
software system may be expected to run is virtually infinite.

Just because a software product runs perfectly in one environment does not mean that it will run at all
in any other environment. All device drivers were not created equal. No two versions of the operating

system are truly compatible, both upward and downward. Standards for data transmission, translation,
and storage vary widely.

Note The entire test inventory should be run against the software under test in each test
environment.

Verifying and validating that the software performs correctly in the hardware and software environments
where it will be expected to run is the most demanding testing task of all. In all but the smallest
applications, this amount of test coverage is impossible unless the testing is automated.

In the planning stage, testers must make a catalog of the environments they plan to test. Management
is normally involved in the decisions about which environment combinations will be tested, because
they approve the purchase of the hardware and software. The best source for selecting environments
that should be tested are the customer support records of problems. Unfortunately, problematic
hardware and software environments are usually first identified and reported by customers.

Usage Statistics: User Profiles

It is common today for progressive commercial software makers to build automatic logging functions
into their products, both for purposes of diagnostics when there is a problem and for gathering historical
data to use in evaluating the functions and usability of their products. Historically, such logging
functions have been used only in beta test sites and special situations. But the information that they
provide is crucial to understanding how the customer uses the system. The understanding of how
important this information is in a competitive market is best illustrated by considering the core features
of the Web servers being marketed today. Makers of Web servers today have included very
comprehensive logging abilities in their products. These logs run continuously in the production
environment, giving the Web master instant access to usage statistics for every page and function in
the system. This information can then be used to tune the Web on a daily basis.

User profile information provides historical data, or feedback, to the developers and testers about how
the product is being used, misused, and not used. The most-used functions, options, and problems are
usually part of this record. These records are often a source of tests for the current release, especially
when new functions have been introduced or functions have been changed to accommodate the users.

When the users report a bug, the user profile information is the best chance of re-creating the bug for
development to fix, and for the testers to regression-test the fix. User misunderstandings commonly
show up in the user profiles, such as a sequence of actions taken by the user that caused an
unexpected outcome. For example, the user did not realize the need to specify a location for a file, and
so the file was not actually saved even though the user clicked on the OK button. Or, it was saved in
some unknown location.

As valuable as these records are in adding tests to the inventory, they are more valuable for prioritizing
the tests. This information is invaluable in determining which functions are used most and how they are
used. This, in turn, helps testers determine where to devote test resources.

Profile information invariably leads to improved product features and usability. For example, a
client/server application might produce over 200 reports. But usage statistics from the host show that
only 15 to 20 of these reports were requested by the customers in the 12 months since release. Such
information can have a profound impact on the projections for both the development and test
schedules.

Another example of using usage statistics to improve a product is the evolution of the toolbar button.
When toolbar buttons were first introduced, they were almost universally ignored by the users. There is
a story from Microsoft that the beta test user profiles showed this nonuse. This information prompted an
inquiry into why this timesaving feature was not being used. The answer was that users were uncertain
what the buttons did and avoided them for that reason. That answer led to an explanation of each
button being placed in the bottom row, or status line, of the window. When the mouse moved over the
button, the explanation would appear. Human factors kept most people from seeing the information at
the bottom of the window when their attention was focused on the toolbar button or menu at the top of
the window. As a result, the buttons continued to be ignored. The next step in the evolution of the
toolbar button was the inclusion of the explanatory text that opens next to the button. This latest
innovation has led to widespread use of descriptive text for all active elements on the screen.

If the test effort has access to this type of usage data, it should be used to help prioritize testing, design
the actual test scripts, and determine the order in which the tests should proceed. The use of user
profile data in the prioritization of tests will be discussed in Chapter 9, "Risk Analysis."

Nonanalytical Methods

Nonanalytical methods are actually the most commonly used methods to design tests. However, when
they are used without any analytical methods, the tests generated will probably not provide systematic
or uniform coverage. Nonanalytical methods are most effective when used after analytical methods
have been applied, to test assumptions made in the analytical tests, to do error guessing, and to design
purely random tests. [3] A couple of the main types of nonanalytical methods are discussed in the
sections that follow.

Brainstorming Sessions

Brainstorming sessions are good sources of test scenarios for the test inventory. The results of
brainstorming sessions can range from highly structured sets of tests to chaos, depending on the rules
by which they are conducted. The scenarios developed in brainstorming sessions typically exercise
important functions in the system but are ad hoc in nature and do not ensure systematic or uniform test
coverage. Typically, this type of test is also generated spontaneously as the test effort progresses
through error guessing and assumption testing on the part of the tester.

An example of this type of test development are cases where a necessary dialog box will not open if the
desktop is in a certain view. When testers discover a bug of this type, it is normal to add tests to verify
that there are not other problems with the particular view. This is a normal corrective action when an
underlying assumption-namely, that the software would function in the same way no matter what view it
is in-is found to be in error.

Expert Testers

Typically, expert testers develop test scenarios that explore hot spots in problem areas such as module
interfaces, exception processors, event processors, and routers. This type of testing is also used to
probe critical security or data-sensitive areas in the system. While these scenarios are very important,
again, systematic and uniform coverage is not ensured.

These tests are often designed to stress a particular module or component that is suspected of being
buggy or to probe for vulnerabilities in components that must be demonstrably secure. An example of
this first type of test would be to set up a series of actions to overload a queue in switch software, and
then verify that the overload is handled properly. An example of the second type of testing is when the
makers of software that provides system security, like a firewall, send their products to special
consultants whose job is to find a way to break the security.

I do not have much to say about specific techniques for adding nonanalytical tests to the inventory.
Nonanalytical tests represent an opportunity to exercise an artistic approach to testing. I have had
plenty of experience creating these tests, as have most testers. They are spontaneous, ad hoc, often
redundant, at least in part, and for the most part, inspirational in nature. Inspiration is capricious, and so
are these tests. Children playing Pin the Tail on the Donkey use more consistent techniques than the
nonanalytical techniques used to test software.

When nonanalytical methods are used without analytical methods, the test set generated will
undoubtedly be seriously deficient. Formal path and data analysis techniques provide consistent and
dependable tools for defining tests. But analytical approaches alone are not enough to ensure an
excellent test suite either, given the current state of technology. The tester's creativity and artistic
technique are still critical factors to building an excellent test set.
[3]Random tests, usually generated and rerun by automated tools, are often called monkeys.

Summary

The performance or quality of the test effort is normally judged by the number of errors that occur after
testing has been concluded-that is, after the product has been shipped to the users. The stringency of
the definition of what is "adequate" varies with the criticality of the system under consideration.
Generally, it can be said that an adequate test effort is one where few serious bugs occur in the product
after it has been distributed to the user community. An adequate test effort requires adequate test
coverage and adequate bug removal.

To determine the quality or adequacy of the test effort, we need to measure certain fundamental things
to answer questions like "How big is i t?" meaning the test effort, "How long will i t take?", and "How
much will be tested?" A test inventory is an excellent tool for answering these questions.

Determining the requirements for an adequate test effort requires that many factors be itemized,
estimated, and totaled. The test inventory is an excellent tool for this job. The test inventory should be
constructed using a combination of analytical and nonanalytical techniques to ensure the best overall
coverage. Like the public grocery list posted on the refrigerator door, it will benefit from having the
broadest possible input. When it is mature, the test inventory should contain a reference to every test
that has been devised for the system. If a thorough analysis of the system is conducted, the number of
tests on the inventory will far exceed the time and resources available to run them during the test effort.
MITs risk analysis is used on the inventory to identify the most important tests and the optimal test
coverage for the effort. The rest of this book gives you the theoretical and practical steps to develop a
mature test inventory that will help you in each phase of your test effort.

In this chapter, I gave you the big picture of what the inventory is and what it can do for you and the
quality of your test effort. The rest of this book deals with how to develop a test inventory that suits your
needs, prioritize its items, negotiate for the resources you need to succeed, and finally, select and
design tests. The first step is to construct a preliminary inventory. I will show you how I do this in the
next chapter, "How to Build a Test Inventory."

Chapter 7: How to Build a Test Inventory

A well-crafted test inventory, like a grocery list, is as succinct as possible. Ideally, each item should fit on one line. All the description and detailed specifics of the test exist but are stored elsewhere, usually later in the test
agreement or test plan. Each main topic or test category will have more detailed layers of tests beneath it.

My management always wanted all the information that they needed, and only the information they needed, on as few sheets of paper as possible. The first test inventory I ever submitted was a photocopy of the test
description section of the table of contents of my test plan. It was about five pages long. Management liked it so well that I have never changed the practice. In project management this is called a rollup.

Starting with the Requirements

When I start an inventory, I begin with the development project requirement documents. These projects may be called by any number of names; the point is, I am looking for the level of project requirement that has a
budget attached to it. I try very hard to make sure all budget items are accounted for on the inventory. I use these requirements to build a preliminary inventory. Next, I catalog all of the related development projects that I
can identify under these requirements. Then I enumerate all the major functions and cross-reference them to their budgeted projects. It looks like this:

Requirement (with budget)

Project under this requirement

Function under this project

Testable items under this function

There can be many testable items under a function, many functions under a project, and many projects under a requirement. When it is all rolled up, it just looks like a requirement. It's a lot like nested file folders on your
hard drive. In fact, I have met many testers who store test cases in this type of structure.

Inventories from different projects can look very different. Following are two samples from the real-world examples discussed earlier. The first is a preliminary test inventory from the structured RAD example in Chapter 4,
"The Most Important Tests (MITs) Method." At this point, it is only a list of the requirements; there is nothing to "roll down" yet. This is possible if it's a plan-driven project with formal budgeting procedures. If it is a
RAD/Agile effort, you may need to be more creative, as we will see in the second example: a preliminary test inventory from a Web development effort also described in Chapter 4.

Sample Inventory from the Structured RAD Project

In this example, I describe a set of formal and politically correct procedures for building your test inventory and discovering the scope of your test effort. This method works well in large organizations where political and
budget boundaries may be sensitive issues. It can scale from small to huge, and it is suitable for heavyweight as well as middleweight projects. This example is from a full system integration test effort in a large system, so
the scope is extensive, as you will see in the coming chapters.

This system test effort differs from individual integration test and IT-conducted system tests in that it seeks to verify that critical business functions are operating properly across the entire system. The system test effort
includes function, performance, and load testing. Rather than focusing on the new data flows through the system, it will focus on day-to-day business functions both before and after the system is subjected to the new data
flows. In theory, very little function will change, but loads on various systems will be increased and new processes will be inserted in the system to handle the new data formats. As such, the final inventory will include
extensive dependency and cross-reference information.

The test inventory is the tool used in this system test effort to identify the scope of the test effort and prioritize it based on each inventory item's risk potential. The inventory is intended to be an enumeration of the software
system testable items that have been identified in the entire project. The initial test inventory was prepared from the available project documentation and is included in the master test plan. Initial priority ratings were applied
to each item in the inventory based on the available project documentation. The inventory also contains the reference to the systems touched by a given item. This initial test inventory serves as a starting place for the
Subject Matter Expert (SME) interview process.

The Billing System Preliminary Inventory

Table 7.1 is an excerpt from the preliminary test inventory prepared for the billing system real-world example discussed in Chapter 4. This excerpt included only the Project Development Requirement documents (PDRs)
applying to one area of the billing system. It was prepared and sorted by the PDR. This example already includes a preliminary prioritization assigned by the test team based on the PDR documentation and budget.

Table 7.1: Preliminary Test Inventory from the Billing System Example, Sorted by PDR

PDR PROJECT DESCRIPTION P IT CONTACTS DEPENDENCIES AND NOTES

MGT0026 AcqrdCo to ParentCo Property Management 1[a]

MGT0027 Treasury System 1

MGT0030 Convert AcqrdCo to ParentCo Expenditure Billing Sys 1

MGT0033 Fixed Assets & Project Accounting 2

MGT0034 Interface AcqrdCo to ParentCo Oracle General Ledger 4

MGT0098 TAX 1.5

MGT0145 Budgets-AcqrdCo Acquisition 1

MGT0150 Convert AcqrdCo to ParentCo Risk Management 2

MGT0201 Convert AcqrdCo to ParentCo Oper. Support/Environ 2

MGT0202 Taxi and T&E Lodging 5

MGT0203 AcqrdCo to ParentCo Car Repair Billing 3

MGT0218 Convert AcqrdCo to ParentCo ORACLE Purch and Mat 2

MGT0219 Convert AcqrdCo to ParentCo Accounts Payable Sys 1

[a]P = Priority (1 = highest, 5 = lowest)

This inventory was created in a spreadsheet using Microsoft Excel. One of the advantages of this representation is that the entire inventory can be sorted by any column. This sample is sorted by PDR, but it can just as
easily be sorted by contact, size, or priority. Another advantage is that the spreadsheet makes it easy to apply formulas and keep track of totals.

The description and dependency sections need to be kept brief, less than 255 characters. The main reason is that you can't copy and paste an entire sheet that contains oversized fields. When you copy an entire sheet, all
fields are truncated to 255 characters max; you have to copy larger fields individually, which is problematic and slow. Many more columns will be added to this inventory as the enumeration process continues, and too much
text in the terse description becomes a formatting problem and a distraction. Use hyperlinks to related documents to carry details forward.

On the Project Web Site

When I create one of these inventories today, I like to do it in a collaborative Web site. Each PDR can then be a hyperlink to the actual documentation in a secure, single-source environment. Using the technology in
dynamically generated Web pages allows me to create a completely traceable inventory that is linked to all its parent and child documents.

I use the Microsoft SharePoint Team Services Web site to support team collaboration and documentation for my projects. It is included free with Microsoft Office 2002; so many people already have it. It supports
collaboration features on both PC and Mac systems and is discussed in detail in Chapter 8, "Tools to Automate the Test Inventory."

Table 7.2 shows the preliminary inventory from Table 7.1 after the addition of the notes from the interviews. This inventory is sorted first by contact and then by priority.

Table 7.2: Preliminary Billing Inventory with the Interview Input, Dependencies, Environmental Description, and Test Requirements

PDR Project
Description

Test
Area

Priority Confirmed Test
Order

Test
Number

Test
Group

IT
Contacts

Dependencies
and Notes

EDI EIS FAS HRIS IIDS Mercury TMC TWS TWSNet TYMS

MGT0030 Convert
AcqrdCo to
ParentCo
Expenditure
Billing Sys

G&A 2 1 SME1,
Dev1,
BIZPart1

Test together
0033 + 0030 +
0218.
Dependent on
MGT0026
shared file:
Rents
Receivable file
with Payroll
(MGT0207)
PeopleSoft +
GL MGT0034

 x

MGT0026 AcqrdCo to
ParentCo
Property
Management

G&A 3 2 SME1,
Dev1,
BIZPart1

Works with
MGT0030
shared file:
Rents
Receivable file
with Payroll
(MGT0207)
PeopleSoft +
General Ledger
MGT0034

 x

MGT0203 AcqrdCo to
ParentCo Car
Repair Billing

G&A 3 2 SME1,
Dev1,
BIZPart1

Needs MGT -
Car Maint. (the
mechanical
part) owner
SME2
w/Payroll
(MGT0207)
PeopleSoft +
GL MGT0034

 x x

MGT0098 TAX G&A 2 1 SME1,
Dev1,
BIZPart2

With Payroll
(MGT0207)
PeopleSoft +
GL MGT0034

x x

MGT0218 Convert
AcqrdCo to
ParentCo
ORACLE Purch
and Mat

G&A 2 1 SME1,
Dev1,
BIZPart2

together 0033
+ 0030 + 0218
w/Payroll
(MGT0207)
Peoplesoft +
GL MGT0034

x

MGT0027 Treasury
System

G&A 4 2 SME1,
Dev1,
BIZPart2

With Payroll
(MGT0207)
PeopleSoft +
GL MGT0034

x x

MGT0034 Interface
AcqrdCo to
ParentCo
Oracle General
Ledger

G&A 4 2 SME1,
Dev1,
BIZPart2

With Payroll
(MGT0207)
PeopleSoft +
GL MGT0034

x x

MGT0033 Fixed Assets &
Project
Accounting

G&A 5 2 SME1,
Dev1,
BIZPart2

Test together
0033 + 0030 +
0218 w/Payroll
(MGT0207)
PeopleSoft +
GL MGT0034

x x

MGT0145 Budgets -
Conrail
Acquisition

G&A 5 2 SME1,
Dev1,
BIZPart2

With Payroll
(MGT0207)
PeopleSoft +
GL MGT0034

x x x

MGT0219 Convert
AcqrdCo to
ParentCo
Accounts
Payable Sys

G&A 5 99 X SME1,
Dev1,
BIZPart2

Effectively
Closed

MGT0150 Convert
AcqrdCo to
ParentCo Risk
Management

G&A 2 1 SME-
Dev2,
Dev3

Data
conversion

x

MGT0201 Convert
AcqrdCo to
ParentCo Oper.
Support/Environ

G&A 2 1 SME-
Dev2,
Dev3

Data
conversion

x x x x x

MGT0202 Taxi and T&E
Lodging

G&A 3 3 SME-
Dev2,
Dev3

Manual work
around
available for
split day.

 x

The List Builder function allows me to import a spreadsheet with one sheet in it. It automatically converts the range of fields I select into a dynamic list in my project database. Figure 7.1 shows the preliminary inventory with
interview notes in list form. This one was imported from the spreadsheet shown in Table 7.2. I can then add fields, create custom views, and let the whole team update the list online by clicking on the Edit button, and I can
export the entire list back out to a spreadsheet any time I want. Again, the field size cannot exceed 255 characters or else the import fails.

Figure 7.1: The inventory converted into a dynamic list on the project's Web site. (Powered by Microsoft SharePoint Team Services.)

As indicated earlier, I have been experimenting with high-function Web sites as document automation tools for some time-with mixed results. Like any other form of automation, they require a change in the way people do
their work, and that initiative requires incentive. Recently, I have proved enough savings from the use of a team site to make a very compelling case for management to demand these changes. See Chapter 8, "Tools to
Automate the Test Inventory," on using a Share-Point Team Services Web Site in your test effort for more information on this emerging way of doing business.

Preliminary Inventory from a Web Project

The test inventory shown in Table 7.3 is an example of a preliminary or first-draft inventory from an early e-commerce application. This is how the inventory would look before any test analysis or design sessions. It is the
second release of the product and has some categories that a new first-release product would not have, such as bug fixes.

Table 7.3: Preliminary Inventory from a Web Project

Sample Application (Release 2.0)

BUG FIX INFORMATION

Fix for error #123 (see req. B477).

Fix for error #124 (see req. B501).

NEW FUNCTION (SEE REQ. D071 AND D072)

New menu option #3: View mini clip.

Purchase option: Not available in some states.

Minimum order must be $30.00.

Method of payment limited to 2 credit cards.

STRUCTURAL/ENVIRONMENT INFORMATION

Enhancement-automatic detection for 50 modems. (Rel. 1 had auto-detect for 3 classes only).

Software installation is automatic at logon.

EXISTING APPLICATION BASE FUNCTION

Standard base function tests still apply:

All test suites for Version 1.0 will be run.

Our best system simulator.

(automated suite BSIM01 67% coverage of Release 1 Test Inventory for the Best Simulator functionality).

Message data flow checker

(automated suite DFCHECK 47% coverage of Release 1 test inventory for the data flow checker functionality).

Screen comparison- Pixel viewer

(automated suite PIXVIEW 77% coverage of Release 1 test inventory for the pixel viewer functionality).

ENVIRONMENT CATALOG

Operating Systems:

Client: Microsoft Windows 3.1 and higher, Win 95, Win 97, NT 3.51 with patches from #4 pack applied.

Host: To be determined.

Network: Under investigation by Net. Engineering plan due (?)

Hardware:

Computers: All machines on the operating system compatibility list.

Modems: All machines on the operating system compatibility list.

Each of the main categories in the inventory was taken from a different project document or captured in a design meeting. If there is no suitable documentation, create a table containing every major feature and known or
suspected facts about the software. These features may come from the marketing and design descriptions of the product, the user interface menus, or from the definitions of program procedures, functions, or object
classes. As in the previous example, this preliminary inventory serves as the starting place for the SME interviews. The following paragraphs describe the main categories in the Web project inventory.

Bug Fix Information

This information would probably not exist in the first release of a product. In a new release of an existing product, there are almost always some bug fixes included in the release. The source documents here are the bug
logs, the bug fix reports, and the product release notes.

New Function (See Req. D071 and D072)

This category comes from the design documents. The notes "See Req. D071 and D072" refer to specific requirements in the design document. If the project is a first-time implementation, all the functionality will probably be
new. If it is a new release of an existing product, only a fraction of the functionality will be new.

Structural Information

These functions are closely related to the system rather than to the user interface. These are typically features that are not easily tested from the user interface and require separate attention. In most system test efforts,
each of these categories has its own separate test inventory.

Application Base Function

This category is a listing of any existing test suites that will be used to reverify the existing functions in the system.

Environment Catalog

An environment catalog or inventory that lists the required hardware and software environments serves as the basis for this part of the test inventory. Testers usually identify a subset of all supported environments from the
catalog for the test effort.

Identifying and Listing the Test Environments

What hardware and software must the system run on and with? Usually this information comes directly
from the requirements documentation. Possible sources of these environmental requirements are
development, in-house operations, and the client's operations group.

So far in the book, we have been discussing two of the main scenarios: the software that will deploy on
a large, fairly static in-house system and the commercial software that will deploy to a large market and
run in many environments. Many other scenarios are possible-for example, firmware, a small software
product that will run in a finite number of environments.

Whatever your situation, you need to identify and list the environments that you will test during your
effort. Each different type of scenario presents its own issues and challenges.

It doesn't matter whether the system is large or small. What is important is that in the real world, the
test environment is never as big as production. However, in order to conduct meaningful testing, the
integration environment must be in synch with production-or, at least, as close as possible. Thus,
involvement with operations is vital, since that is where the expertise is. Hopefully, they will have
adequate budget to create and support all the test environments that are needed.

I am a firm believer in the settling-pond approach to test environments. The settling-pond approach
comes to us from wastewater management, a different but similar branch of engineering. The settling-
pond approach uses a series of ponds to clean and purify wastewater. In the first pond, the heavy
waste is encouraged to settle to the bottom, where it is pumped out. The top layer of fluid, now sans
solids, is allowed to flow gently into the next tank for further cleaning. Cleaning may involve various
activities, including the addition of aerobic entities and sanitizing chemicals. Each tank is its own
environment, and each accomplishes a progressively more stringent clarification of the effluent by
settlement. The settling-pond approach in testing is basically the same thing. It uses several test
environments, each one cleaner than the last and more a mirror of the actual production environment.
By the time the code gets to production, it has been well cleaned.

For example, at Prodigy, we performed module testing in a small, simulator-driven environment, and we
performed our first integration tests in a shared integration environment. There was a lot of new code in
the integration environment, so it was a fairly unstable place. Code might work one day and not the
next. Once the application was thought stable and had passed its exit criteria, it was migrated to a
cleaner integration environment where only tested, stable code was allowed. Finally, when it was ready
to go to production, it was moved to a mirror environment for rehearsal and customer acceptance
testing.

I still use this approach with all my Web-based applications. It is a very convenient way to test the
application in the full production environment but still keep it private. It is also a good way to protect a
functioning Web environment from new code. I make a backup mirror or, perhaps more correctly, a fall-
back mirror, before new code is moved into production.

Note Developers should not be allowed to control, modify, or even test in the tester's test
environment. They must have their own.

Testing a Large System

If you are dealing with a large system, as in our real-world shipping example that we explored in
Chapter 4, then the environmental definitions and requirements are probably already included in the
PDRs. Operations is often way ahead of testers in the planning process. In this real-world shipping
example in particular, the operations staff actually was the source of the environment information. They
had purchased the equipment and scheduled its live dates before a test group was assembled.
Development did not have the information; they relied completely on operations to supply them with the
correct environments. In other large system projects that are deployed on the client's system, only the
client will be able to tell you the environment requirements, and those requirements are probably
different at each customer site.

If you are working on commercial software that will run in the real world, a separate analysis and
definition step will probably be required when you enumerate the test environments for each customer.

In my experience, performing customer-specific environmental evaluations has traditionally started by
the software vendor publishing a list of supported hardware, software, and platform information to the
customer. Then someone installs the software, and, finally, someone bulldozes through the system,
fixing configurations, conflicts, and bugs as they are encountered.

Figure 7.2 shows the environmental definition for the real-world example. This screen shot is the
Environment Catalog view of the billing inventory shown on the Web site, taken from the data shown in
Table 7.2. Everything to the right of the column labeled EDI is an environment in the system-for
example, EIS, FAS, HRIS, IIDS, Mercury, TMC, TWS, TWSNet, and TYMs. The X's at the left side of a
column indicate that this particular project touches this environment in some way.

Figure 7.2: Environment details provided during the second-level interviews.

This Web technology makes it very easy for the team to publish and maintain this information in a
controlled environment. Any members of the team can be given authoring permission that lets them
add, change, or delete any of this list information. Authors can even add columns to the list. The list
concept also makes it very easy to sort or filter by any column. So it is very easy to pull a subset of
items together-for example, all the projects that touch a certain system. When we combine this list with
the list of tests, we can compile the list of tests that touch a system. We use this capability to build test
suites on the fly as needed.

Testing Multiple Environments

If testing is automated, the entire test suite can be run against each environment each time code is
turned over. In the Tester's Paradise sample application, a sample automated test effort found at the
companion site to this book, www.testersparadise.com, environment testing is not mentioned directly in
the overall count of tests because the test suite is automated and the test plan called for the test suite
to be run simultaneously in all the test environments-hence, the assumption of 100 percent test
availability. (The Tester's Paradise application is discussed further in Chapters 10, 12, and 13.)

Many projects today are funded by the organization that wants the product. So, you must first verify and
validate the system in that first environment. Once the first customer is running, add the next
environment to test; you already have the MITs tests in your suite.

If testing is manual, the prioritization of environments is critical, since there may not be sufficient time or
resources to run the entire test suite against every environment. Consider Table 7.4. For example, if
the test inventory contains 50 tests and takes 40 hours to run, every test environment you add to the
test effort will require an additional 40 hours of test time, plus the time it takes to set up the test
environment. In addition, when code fixes come in, they need to be tested in each of the environments.

Table 7.4: Environment Description Matrix

ENVIRONMENT
NAME

SERVER
HARDWARE

OPERATING SYSTEM
AND DATABASE

NUMBER OF
USERS

C486-66-30O 2 Pentium 4 2.8-GHz,
120 GB HD

Windows XP Information
Server, SQL Server

1

C486-33-30W 2 Pentium 4 2.0-GHz,
80-GB HD

Windows 2000 Advanced
Server, SQL Server

1-50

C486-33-30W 2 Pentium 4 2.0-GHz,
80-GB HD

Windows 2000 Advanced
Server, Oracle

1-100

C486-33-30S To Be Determined 40-
MB HD

Linux, MySQL 1-25

C486-33-30O To Be Determined 40-
MB HD

Unix, RDBMS 1-100

C486-33-30O To Be Determined 40-
MB HD

Unix, Informix 1-100

C486-33-30O To Be Determined 40-
MB HD

Unix, Oracle 1-100

Analysis and enumeration of test environments can be conducted using the same techniques as data
sets, discussed in Chapter 13, "Data Analysis Techniques." An environment matrix is usually the
easiest way to publish and track the environments that will be tested. A simple environment matrix is
shown in Table 7.4. In this table, hyperlinks serve to link the environment name to the detail layers of
the description. There are many ways to prepare an environment matrix. I present a different type in
Chapter 8, "Tools to Automate the Test Inventory."

Adding Detail and Process Layers

The interview process is the most efficient method for reviewing, correcting, and enriching the test
inventory and building the system-level process flows. The information gathered during the interviews is
used to correct and refine the test inventory and to identify data dependencies and cross-
project/intersystem dependencies.

The product of the interview process is a mature, prioritized test inventory that encompasses the entire
system and includes the expert input of all the participants. The test inventory and its prioritized test
items are used to build cost, sizing, and scheduling estimates during the planning phases. During the
test effort, the test inventory becomes the test repository and test metrics database.

Note The number of possible combinations of hardware and software, users, and configurations
often is larger than all other tests combined.

I have included the interview section here because it really is an integral part of building consensus and
the agreement to test, along with determining the scope of the test effort. I use it to open
management's eyes as to the size and complexity of what they are undertaking, as well as to educate
myself and my team about what the project is and is not. The interview process or some other form of
review needs to be conducted on the inventory before the analysis phases, which are discussed in
Chapters 11, 12, and 13. Otherwise, your analysis will likely be a waste of time.

In addition to the project's coding requirements, it might also be appropriate for you to establish the
environments that the system will run in during the interview process. However, I don't advise doing so
during the interview if the number of environmental dependencies is extremely large or a political issue.
I don't want the interviewee to become distracted from the core questions about his or her project.

Let's discuss two ways to approach this interview process: the traditional face-to-face interview
approach and the modern Web-based collaborative approach. The preparation and materials are
almost the same for both approaches. The difference is in the way we gather the information. The tried-
and-true method using the interview process is described in the paragraphs that follow. The automated
alternative is to prepare the materials electronically and place them in a high-function Web site. In this
scenario, everyone is responsible for filling out the questionnaire as an electronic form, and you capture
their responses in a database. I have tried for three years to use a Web site for this purpose and have
only recently had any positive results that were actually preferable to the interview process. (I will talk
about this project also.) Whichever method you choose, get support from upper management early in
the process. If you don't, you will be pushing a big snowball uphill all by yourself. At any time it could
overwhelm and crush you. Be especially cautious if this interview process is something new in your
culture. If you opt for the interview approach, you will find instructions on how to perform the interviews
in the following section, The Interviews: What and How to Prepare. Feel free to alter the process to fit
your needs. Just keep your goals clearly stated and clearly in view.

The Interviews: What and How to Prepare

In the ideal case, I plan two levels of interviews for the system test planning effort: high-level interviews
(duration: 15 to 30 minutes) and mid-level interviews (duration: 30 to 60 minutes). Interviewees are
solicited from each of the project areas: IT, support, and system groups. Management may decide to
go with just one set of interviews; I leave the choice to them. The trick is to do the best you can with
what they give you.

Why Two Sets of Interviews?

The people I need to see are the SMEs. So why talk to the managers? The answer is, "because it is
polite." I always offer management the choice and the opportunity to control the situation. That's what
they are supposed to do, right?

Bona fide subject matter experts are few in numbers, expensive, and generally grossly overbooked.
Development managers are especially protective of their wizards. In a bureaucratic shop, or worse, in a
politically polarized situation, you will probably derail your effort if you try to go right to the SMEs. If you
only rely on your personal charm, you will only get a subset of the SMEs into your interviews, and you

could get into trouble. If you can't get management support, then by all means try the direct approach,
but be careful.

The Expendable Tester Ploy

One of the values that I add to a test project when I come in as a consultant is that I am
"expendable." That's part of the reason that my consulting rates go so high. I am sacrificed on a
fairly regular basis. This may sound odd, but let me explain.

In a big project, there are lots of politics. They usually have to do with budget and deadlines
(usually impossible to meet). Or worse, they involve projects that have already gone bad and
someone is trying to put a good face on the failure. I am often charged with detecting such
situations and failures.

The normal tester who works for this company doesn't have the clout, the budget, or the
perspective to get through the opposition that a development manager/director or even vice
president can dish out. And the tester shouldn't even try. Hence, one of my best uses as a
contractor is to "test the water."

When I walk into a planning meeting with development and lay out this "best-practice" methodology
for testing the system, it is likely that not everyone is delighted about it. Typically, there are many
reasons for the participants to disagree with what I have to say. These reasons are usually related
to budget, but they can also be about impossible delivery dates, and the ambition of employees
who want to be recognized as "experts".

Asking regular employees to risk their pensions in an undertaking of this type is not fair or right. A
shrewd manager or director (usually a vice president) knows a lot about these intrigues, but that
person will always need to find out exactly what is going on "this time." So we engage in a scenario
that is a lot like staking the virgin out in the wasteland and watching to see who comes to dinner.

I am normally sacrificed to an ambush in a routine meeting somewhere just before the actual code
delivery date. And when the dust and righteous indignation settle, all the regular employees are still
alive and undamaged. My vice president knows who his or her enemies are. And the developers
have a false sense of security about the entire situation. Meanwhile, the now dead contractor (me)
collects her pay and goes home to play with her horses and recuperate.

The message for you normal employees who are testers is hopefully that this information will help
you avoid a trap of this type. In any case, don't try these heroics yourself, unless you want to
become a contractor/writer. But do keep these observations in mind, as they can be helpful.

Prepare an overview with time frame and goals statements, like the one listed under the Sample Memo
to Describe the Interview Process heading in Appendix C, "Test Collateral Samples and Templates."
Also prepare your SME questionnaire (see the Sample Project Inventory and Test Questionnaire for the
Interviews in Appendix C), and send both to upper management. Get support from management as
high up as you can. Depending on your position, your manager may need to push it up on your behalf.
Just remind her or him that it is in the manager's best interest, too. In a good scenario, you will get
upper management's support before you circulate it to the department heads and all the participants. In
the ideal scenario, upper management will circulate it for you. This ensures that everyone understands
that you have support and that they will cooperate. Here are my general outlines for the middleweight to
heavyweight integration effort in the real-world example.

My Outline for High-Level Interviews

I plan for high-level interviews to take 15 to 30 minutes. (See the sample in Appendix C.) This is just a
sample. Your own needs may differ greatly, but make sure you have a clear goal.

My outline for this type of interview is as follows:

GOALS

Identify (for this expert's area):1.

The project deliverables

Owners of deliverables (mid-level interviewees)

Project dependencies and run requirements

Interproject

Cross-domain functions/environment

Database and shared files

Business partners' projects

System and environment requirements and dependencies

The location of, and access to, the most recent documentation

1.

Get management's opinion on the following:

Ranking priorities (at the project level)

Schedules

Delivery

Dependencies

Testing

This next section was added after the preliminary inventory was built. These items were added
based on what we learned during the preliminary interviews and the meetings that followed. I
talk about the day-in-the-life scenarios later in this chapter.

2.

Go through the day-in-the-life scenarios to understand and document, answering the following
questions:

Where do the new projects fit? (If they don't fit, identify the missing scenarios.)

How do the systems fit together; how does the logic flow?

Which steps/systems have not changed and what dependencies exist?

3.

My Outline for Mid-Level Interviews

I plan for mid-level interviews to take from 30 to 60 minutes. (See the sample in Appendix C and the
section Example Questions from the Real-World Example, which follows. Your own needs may differ
greatly from what's shown in the sample, but make sure you have a clear goal. Be sure to ask the
developer what type of presentation materials he or she prefers, and have them on hand. See my
discussion of the "magic" questions in the Example Questions from the Real-World Example coming
up.

My outline for this type of interview is as follows:

GOALS

Find out everything possible about the project-what it does, how it is built, what it interoperates
with, what it depends on, and so on. If appropriate, build and review the following:

The logic flows for the projects and systems

The test inventory

Enumerate and rank additional test items and test steps in the test inventory

Data requirements and dependencies

All systems touched by the project

1.

2.

Get answers to the following questions (as they apply):

What will you or have you tested?

How long did it take?

How many testers did you need?

What do you think the test group needs to test?

2.

Identify additional test sequences.3.

Identify requirements for test tools.4.

Establish the environment inventory and dependencies, if appropriate.5.

Example Questions from the Real-World Example

From the real-world example, here are the questions that I asked in the interview questionnaire:

Are these your PDRs? Are there any missing or extra from/on this list?1.

Is the project description correct?2.

Which test area is responsible for testing your code and modules before you turn them over to
integration test?

3.

What is the priority of this project in the overall integration effort based on the risk of failure
criteria?

4.

Who are the IT contacts for each project?5.

What are your dependencies?6.

In addition to integrating this code into the new system, what other types of testing are
requested/appropriate:

Function

Load

Performance

Data validation

Other

No test

System test

7.

What databases are impacted by this project?8.

What else do we testers need to know?9.

Conducting the Interviews

Schedule your interviews as soon after the statement is circulated as possible; strike while the iron is
hot. Leave plenty of time between the individual interviews. There are a couple of reasons for this; one
is to make sure that you can have time to debrief your team and record all your observations. Another
reason is that you don't want to rush away from an expert that has more to tell you.

Prepare a brief but thorough overview of the purpose of the interview and what you hope to accomplish.
I use it as a cover sheet for the questionnaire document. Send one to each attendee when you book
the interview, and have plenty of printouts of it with you when you arrive at the interview so everybody
gets one. Email attachments are wonderful for this purpose.

Be flexible, if you can, about how many people attend the interview. Some managers want all their
SMEs at the initial meeting with them so introductions are made once and expectations are set for
everyone at the same time. Other managers want to interview you before they decide if they want you
talking to their SMEs. Every situation is different. The goal is to get information that will help everyone
succeed. So, let the interviewees know that this process will make their jobs easier, too.

Keep careful records of who participates and who puts you off. If a management-level interviewee
shunts you to someone else or refuses to participate at all, be sure to keep records of it. It has been my
experience that the managers who send me directly to their developers are usually cutting right to the
chase and trying to help jump-start my effort by maximizing my time with the SMEs. The ones that
avoid me altogether are usually running scared and have a lot to hide. For now, just document it and
move forward where you can.

How to Conduct the Interviews

Be sure that you arrive a little early for the interview and are ready to go so that they know you are
serious. Hopefully, the interviewees have taken a look at the questionnaire before the meeting, but
don't be insulted if they have not. In all my years of conducting this type of interview, I have only had it
happen twice that I arrived to find the questionnaire already filled out. However, they usually do read
the cover sheet with the purpose and goals statement. So make it worth their while. If you can capture
their self-interest in the cover sheet, you have a much better chance of getting lots of good information
from them. They will have had time to think about it, and you will need to do less talking, so you can do
more listening.

Print out the entire inventory with all current information, sorted by priority/delivery and so on, and take
it with you so you can look up other projects as well. Take a copy of the inventory that you have sorted
so that the items relevant to the particular interview are at the top.

Give all attendees a copy of each of these materials, and have a dedicated scribe on hand, if possible.

Instructions for Interviewers

My short set of instructions to interviewers is as follows:

Be quick. Ask your questions 1, 2, 3-no chitchat. Set a time limit and be finished with your
questions on time.

Finish your part on time but be prepared to spend as much extra time as the interviewee wants.
Go through each question in order and write down the answers.

1.

Listen for answers to questions that you didn't ask. Often, the developers have things that they
want to tell you. Give them the chance. These things are usually very important, and you need to
be open to hear them. I will give you some examples later in this section.

2.

Follow up afterward by sending each participant a completed inventory. Close the loop, and give
them the chance to review what you wrote. Confirm that you did hear them and that what they
told you was important. Sometimes they have something to add, and they need to have the
opportunity to review and correct as well.

Another important reason for doing this is that often developers look at what other developers
said and find things that they didn't know. Many integration issues and code conflicts are
detected in this way. It is much cheaper to fix these problems before the code moves from
development to test.

3.

Let them hash out any discrepancies; don't propose solutions to their problems.

In the real-world example, interviews were scheduled with the directors of each development
area. The directors were asked to name the developers from their areas who would participate in
the second level of interviews. Some directors were pleased with the process; some were not.
Only one of the seven directors refused to participate in the interview process. Two of the
directors had their development leads participate in both sets of interviews. Operations,
customer support, and several of the business partners also asked to take part in the interview
process. Including these groups not only helped enrich the information and test requirements of

4.

the inventory, it also gained allies and extra SME testers for the integration test effort.

An interview was scheduled to take no longer than 20 minutes, unless development wanted to
spend more time. We were able to hold to this time line. It turned out that several developers
wanted more time and asked for a follow-up meeting. Follow-up interviews were to be scheduled
with the development managers after the results of the preliminary interviews were analyzed.

Analyzing the Results: Lessons Learned

Refer back to Table 7.2, which, you'll recall, incorporates the notes from the interviews into the
preliminary inventory from Table 7.1. This inventory is sorted first by contact and then by priority. Notice
that under the Priority column, "P," several of the initial priorities have been changed radically. In this
project it turned out to be a profound mistake for the testers to estimate the relative priority of the
projects based on a project's documentation and budget. Not only were the estimates very far from the
mark established by development, but the test group was soundly criticized by the developers for even
attempting to assign priorities to their projects.

The lesson learned in this case was be prepared, be thorough, but don't guess. We learned that lesson
when we guessed at the priorities, but learning this lesson early saved us when we came to this next
item. Notice the new column, TS-that is, Test Order. I will talk about it in detail in the next section.

The next thing to notice in the table are all the dependencies. One of the unexpected things we learned
was that when the dependencies were listed out in this way, it became clear that some of the SMEs
were really overloaded between their advisory roles and their actual development projects.

And, finally, the columns with the X's are impacted systems. This is the environmental description for
this project. Each column represents a separate system in the data center. The in-depth descriptions of
each system were available in the operations data repository.

When the full post-interview test inventory was published, the magnitude of the effort began to emerge.
The inventory covered some 60 pages and was far larger and more complicated than the earlier
estimates put forth by development.

When I go into one of these projects, I always learn things that I didn't expect-and that's great. I can
give management this very valuable information, hopefully in time, so that they can use it to make good
decisions. In this case, we discovered something that had a profound effect on the result of the
integration effort, and the whole project. Just what we discovered and how we discovered it is
discussed in the next section.

Being Ready to Act on What You Learn

As you learn from your interviews, don't be afraid to update your questionnaire with what you have
learned. Send new questions back to people that you already interviewed, via email, if you can. Give
them the chance to answer at a time that's convenient in a medium that you can copy and paste into
your inventory. Every effort is different, and so your questions will be, too. Look for those magic
questions that really make the difference to your effort. What do I mean by that? Here are a couple of
examples.

What Was Learned in the Real-World Example

In the real-world example, the most important thing that we had to learn was very subtle. When I asked
developers and directors what priority to put on various projects, their answer wasn't quite what I
expected. It took me about four interviews before I realized that when I asked,

"What priority do you put on this project?"

The question they were hearing and answering was actually

"In what order do these projects need to be delivered, assembled, and tested?"

What emerged was the fact that the greatest concern of the developers had to do with the order in
which items were integrated and tested, not the individual risk of failure of any module or system.

This realization was quite profound for my management. But it made perfect sense when we realized

that the company had never undertaken such a large integration effort before and the individual silos
lacked a vehicle for planning a companywide integration effort. In the past they had been able to
coordinate joint efforts informally. But this time just talking to each other was not enough. Each silo was
focused on their own efforts, each with their own string Gantt on a wall somewhere, but there was no
split day integration planning organization in place, only the operations-led integration test effort. So
there was no overall critical path or string Gantt for the entire effort.

I added a new column to the test inventory, "Test Order," shown as the sixth column in Table 7.2. But it
became clear very quickly that no individual silo could know all the requirements and dependencies to
assign the test order of their projects in the full integration effort. This realization raised a large concern
in management.

The beginning of the solution was started by inviting all interested parties to a required meeting in a
large conference room with a big, clear, empty wall. Operations sponsored the meeting, and it was
organized by the test group. We assigned a different color for each of the group silos. For example,
accounting (which was the parent silo for billing) was assigned green, the color of money;
documentation was gray; development was white; and so on. We printed each line from the preliminary
inventory at the top of a piece of appropriately colored paper, complete with PDR, group description, IT
owner, and dependencies columns.

About "Big Bang" Efforts

In this real-world example, upper management had promised their regulating agency that the
transition from two companies to one company would be undetectable to the public and all
customers. In this light it seemed that the best approach was to go to bed as two companies and
wake up on as one company. This approach is called the "big bang" method. It is intended to
minimize outages and aftershocks. Critical transitions are often performed using this approach-for
example, banking mergers, critical system switchovers, and coups in small countries.

In a big bang, good planning is not enough by itself. Success requires that everything relating to
the event be carefully choreographed and rehearsed in advance. Rehearsal is an unfamiliar
concept to most developers, and so success usually depends on a specialized integration team
with far-reaching powers.

After the prioritization fiasco, I had learned not to "guess." So rather than waste my time doing a
preliminary layout on the wall that would let them focus on criticizing my group instead of focusing on
their integration issues, I gave each director the stack of papers containing his or her PDRs as they
arrived. We also bought a large quantity of 2-by-2-inch sticky pads in the silos' colors and gave each
member of a silo a pad of stickies in their color.

We explained that the purpose of the meeting was to clarify the order in which the projects should be
integrated and tested. And we invited the developers to stick their PDR project sheets on the wall in the
correct order for delivery, integration, and testing. We also asked them to write down on the paper all
the integration-related issues as they became aware of them during the meeting. Directors and
managers were invited to claim the resulting issues by writing them on a sticky along with their name
and putting the sticky where the issue occurred.

I started the meeting off with one PDR in particular that seemed to have dependencies in almost all the
silos. I asked the director who owned it to tape it to the wall and lead the discussion. The results were
interesting, to say the least. The meeting was scheduled to take an hour; it went on for much longer
than that. In fact, the string Gantt continued to evolve for some days after (see Figure 7.3). We testers
stayed quiet, took notes, and handed out tape. The exercise turned up over a hundred new
dependencies, as well as several unanticipated bottlenecks and other logistical issues.

Figure 7.3: A string Gantt on the wall.

Fact: Integration is a matter of timing.

The "sticky meeting," as it came to be called, was very valuable in establishing where at least some of
the potential integration problems were. One look at the multicolored mosaic of small paper notes
clustered on and around the project papers, along with the handwritten pages tacked on to the some of
the major projects, was more than enough to convince upper management that integration was going to
require more that just "testing."

The experience of the sticky meeting sparked one of the high-ranking split day business partners to
invent and champion the creation of the day-in-the-life scenarios, affectionately called "dilos." The idea
behind the day-in-the-life scenarios was to plot, in order, all the activities and processes that a business
entity would experience in a day. For example, we could plot the day in the life of a customer, a freight
carrier, a customer service rep, and so on.

This champion brought in a team of professional enablers (disposable referees) to provide the problem-
solving structure that would take all the participants through the arduous process of identifying each
step in the dilos, mapping the steps to the PDRs and the system itself, recording the results, and
producing the documents that were generated as a result of these meetings.

The dilos became the source of test requirements for virtually all system integration testing. They were
used to plot process interaction and timing requirements. They also served as the foundation for the
most important system test scenarios.

What Was Learned in the Lightweight Project

During the last set of interviews I did at Microsoft, the magic question was "What do I need to know
about your project?" The minute I asked that question, the SME went to the white board, or plugged her
PC into the conference room projector and started a PowerPoint presentation, or pulled up several
existing presentations that she emailed to me, usually during the meeting, so that they were waiting for
me when I got back to my office. I got smarter and put a wireless 802.11 card in my notebook so I could
receive the presentation in situ, and I worked with the presentation as we conducted the interview. The
big improvement was adding a second scribe to help record the information that was coming at us like
water out of a fire hose.

The big lesson here is this: If you can use automation tools to build your inventory, do it. The wireless
LAN card cost $150, but it paid for itself before the end of the second interview. The developer emailed
her presentation to me in the meeting room. Because of the wireless LAN card, I got it immediately. For
the rest of the interview, I took my notes into the presentation, cutting and pasting from the developer's
slides into my questionnaire as needed. And I was able to publish my new interview results directly to
the team Web site before I left the meeting room. After the meeting, I was finished. I didn't have to go
back to my office and find an hour to finish my notes and publish them.

We have discussed automation techniques for documentation in a general way in this chapter. For

specific details and picture examples, see Chapter 8, "Tools to Automate the Test Inventory."

Summary

It doesn't matter what weight your project is; you need a test inventory. It will help you at every stage of
the test effort. In this chapter, I have shown you two examples of preliminary test inventories. We
learned a great deal just assembling the preliminary test inventories. Neither one has a single test
attached to it yet, and still it is valuable from the very beginning.

When you are building your test inventory, start with the requirements. Even if you don't have formal
requirements, you can list what the product is supposed to do.

Be sure you identify and list the environments that you will have to test. In the heavyweight example,
we needed to do a lot of planning to integrate the various projects in their test systems. But once there,
the systems were fairly static. For example, we didn't need to test one application against four different
RDBMS products. If you are working on a lightweight project, like a Web-based application, you will be
more concerned with listing how many RDBMS products you need to test against. Remember, the
number of possible combinations of hardware and software, users, and configurations often is larger
than all other tests combined.

The product of the interview process is a mature, prioritized test inventory that includes the entire
system. Ideally, it is built with the input of all the participants. The way you plan and conduct your
interviews is a very important step in building a good inventory and getting an accurate prioritization of
the items on it. The test inventory and its prioritized test items are used to build cost, sizing, and
scheduling estimates during the planning phases. During the test effort, the test inventory becomes the
test repository and test metrics database.

Expect some surprises and be ready to act on what you learn. It could give you the opportunity to add
value early in the planning stages of the test effort-long before any testing is being done.

And finally, remember, integration is a matter of timing. Planning is probably not as useful as planning
and rehearsing.

In Chapter 8, I show you the tools I use to construct my test inventories and automate my metrics
calculation. As you will see, you probably already have these tools.

For Further Exploration

Before you go on to the next chapter, it's a good idea to try out your understanding of what you read in
this chapter. These concepts are not difficult to understand, but fitting them into different types of
projects requires a fair amount of creativity. Here is an opportunity for you to apply the concepts
presented in this chapter before you go on to read about how to automate the construction of your
inventory.

Imagine you are applying for a job as a test engineer at TestersParadise.com. You have just been
presented with product descriptions for Product A and Product B. After reading through the
descriptions, perform the following steps:

Construct a preliminary test inventory for each product.1.

Determine what is missing from these descriptions.2.

Determine what questions you would have for the designers and developers.3.

Product A

This product is a flexible Web conferencing system, or forum, which enables online discussions via the
Web on intranets and the Internet. People can share information with each other using their Web
browsers. The product provides a wide range of options for configuring discussions and managing
access and security. The system can scale from hobby class Web sites, to enterprisewide systems, to
online Web services. All the system administration and configuration is accomplished through the Web.
In addition, Product A features:

A simple user interface with highly customizable layout. This allows the user to easily adjust the
format of each conference, including graphics, background colors, custom HTML headers and
footers, and announcement text.

Unlimited conferences. The user can create any number of conferences on the same system.

Threaded discussions. The product uses an intuitive system of nested, threaded discussions that
facilitates communication and increases the effectiveness of online interaction.

Advanced searching. Users can use powerful searching tools to find messages or search for
postings by author, date, keyword, or discussion area.

Flexible security. The system provides highly configurable security options that meet the needs of a
wide range of public and private conference configurations. It enables the use of transparent user
identification with persistent cookies and email-back user verification.

Easy administration. The administrator can administer the system via a Web browser. The system
uses simple wizards to set up and configure all system and user settings.

Product B

This product is a Win2000/XP device driver for IrDA-compatible mobile computers. (IrDA stands for
Infrared Data Association.) This driver provides a fast, reliable, and convenient way to exchange data
wirelessly to or from your desktop computer with any IrDA-equipped laptop computer. You can access
data and applications from local floppy or hard drives, access networked data, or print to any printer
that is connected to your desktop computer or network. In addition, this product:

Supports the Plug-and-Play standards.

Supports IrDA IrLAP (Infrared Link Access Protocol) to keep your data safe and error-free.

Supports IrDA infrared communications specification.

Transmits and receives data at 115,200 baud with baud-rate switching capabilities.

Uses standard PC serial (RS-232C) connections (9-pin or 25-pin).

As you can see, you could formulate any number of possible answers and questions about these
projects. You can check your answers and compare notes with others online at
www.testersparadise.com.

Chapter 8: Tools to Automate the Test Inventory

Overview

When I worked at Prodigy, each of my projects got its own 3-inch, blue, three-ring binder. The binder
contained all the information required to understand, validate, and verify the project. Topics were
separated by sheets with plastic topic tabs and annotated sticky notes of every color that stuck out from
between pages at odd angles. The blue book was typically full to overflowing. The papers in it were a
colorful hodgepodge of photocopies, faxes, and hand-drawn pictures. The formal ones were on
quadrille grid paper, but many were on notepad paper and the odd napkin. The colorful part was not
only due to the stickies but because most pages were liberally retouched in yellow, pink, and green
highlighter.

The inventory figured prominently in the binder, as did the bug statistics and the list of open issues
(closed issues were removed to a binder of their own to conserve space), delivery schedules, project
dependencies, and lots of other test essentials. I took a lot of ribbing because I showed up at every
meeting with one of those stuffed binders. But when anyone-manager, developer, tester, operations
support, or even business partner-wanted to know something about the application or the system it was
running in, he or she came to ask me to consult the blue book.

Today, my blue books live in my Web servers, under the regular scrutiny of my search engine. Now
when someone wants to know something about the project, I direct him or her to the appropriate search
page. Even though I can now keep more information than in the binder days, the type of information
that I keep in Web sites hasn't changed much over the years, but I create it and maintain it a lot faster
and with a lot less work. Where there were once sticky notes, today there are hyperlink menus. The
colorful highlighter marks have been replaced by the search engine's transient gray highlight covering
your search keywords in a document "hit." All in all, it's bigger, better, faster, and a lot smarter than the
blue books, but when I go out consulting, most of the testers I meet are still trudging around with stacks
of paper and no Web site to call their own.

Except for the time testers spend testing, most of their time is devoted to managing and preparing test
documentation. Automation techniques for test documentation are both an excellent quality
improvement opportunity and a potent tool for shortening the time required for documentation, and
therefore, the test effort. My studies from 1993 to 1997 showed that document automation can reduce
the time required to write the test plan, test scripts, and reports by as much as two-thirds.

My work with high-function Web sites from 1997 to 2003 has shown that Web-based automation can
be used to automate the creation of many additional types of documents, such as test scripts,
checklists, and status reports, as they are needed. This documentation is always up-to-date, and all
parties are assured that they are getting the same document all the time, no matter where they are in
the world. Perhaps even more importantly, the built-in search engine in the Web server allows the
testers to find the information they are looking for in all those documents quickly.

The savings from this type of automation can be profound, and it can also serve to facilitate culture
change in an organization. I have noticed that the speed with which testers deliver an answer to
management has a direct relationship with their credibility. Of course, the correctness of the answer is
also a factor, but I will leave that for a different discussion.

In this chapter, we discuss both types of automation in this feature. We also talk about the tools and
the process that I use to evolve the test inventory. Again, I use different tools and different processes
based on the needs of the project. The steps described are offered as guidelines and seed ideas only;
they do not need to be followed precisely. Feel free to be innovative in the sources you use to begin
your test inventory. Each of the tools discussed in this chapter has its strengths and weaknesses.

General rule of thumb: Use the sharpest tool in the shop for the job at hand.

Recently, a fellow tester asked me to evaluate a dedicated test tracking tool. The tool provided special
document templates for most required test documentation, as well as customizable forms to be used to
create and track tests. Finally, all documents could be stored in a specialized Web site. His group
wanted to improve their efficiency, and they were willing to spend their own time to learn to use this tool

set. The license for the 10-person test group would cost about $15,000.

I evaluated the tool and had my CS staff, who are my in-house testers, look at it as well. All of us had
the same reaction: "Why spend money on a tool that just does what we already do with our Microsoft
Office tools?"

Instead of telling the tester's group this, I asked what their goals were for the new tool, how quickly they
thought they could convert to it, and what they thought the payback time would be for it. Then I asked
them to consider what it would cost them to invest in their knowledge of Microsoft Office, which they
already had installed, to learn how to create their own forms and document templates, store them in
their own database, and use a SharePoint Team Services site for their specialized test Web site.

The answer surprised them. It turned out to be far more efficient for them to spend money on
themselves to become educated on how to better use the tools they already had on their PCs. There
were several additional benefits to the test department, as well as the improved efficiency of the next
test effort. Chief among these was the prestige that came with deploying and capitalizing on one of the
most useful and technically advanced Web sites in their company.

Sometimes the answer is simply to invest in learning how to use what you have better-learning to use
more of its capability more efficiently. It makes you more valuable, too.

Note Invest in yourself; learn to use the tools you have well.

Now let's look at this process using tools from the Microsoft Office Suite. For better or for worse, the
Microsoft products are ubiquitous, and even high school kids today have training in the use of Word,
Excel, and often PowerPoint. With the advent of the Web, there are more and more international
projects being undertaken, and Office is there too, with internationalized dictionaries and even some
modest translation capabilities. I apologize to those of you who use a different office product, word
processor, spreadsheet, and so on. However, even though the specifics may vary, these instructions
should give you the general direction in which to go.

The Evolving Test Inventory

The inventory precedes the test plan, or, in my case, the contract to test. When the inventory is fully
fleshed and agreed upon, I can add the other items that the test plan needs in order to be acceptable.
In the case of the heavyweight real-world example that we discuss throughout the book, the test plan
was actually a master test plan that enumerated the test plans of the projects that it comprised and
described how those projects would become integrated, verified, and validated. Its inventory contained
all the functions and features of the projects it contained, appropriately rolled up to the high level. It was
over 500 pages and contained references to over 1,000 related project documents. The project
documentation for all the related projects filled an entire bookcase.

In a Web-based or other lightweight project, there is probably only one project. Its functions and
features are enumerated in the inventory, as we discussed in Chapters 6 and 7. The inventory is the
bulk of the test plan. It might be 10 pages long. I recently completed a project that used a PowerPoint
slide deck and an Excel spreadsheet as the test plan; it was primarily made up of the test inventory.
Most of the plan was built using FrontPage to create the links and deploy the slides. Most of the
composition and information gathering was done online using our SharePoint Team Services Web site
and its dynamic lists. The project was integrated, tested, and deployed with no major problems, on time
and within the budget. It had project team members in four countries and three time zones, speaking
three different languages. One of the biggest savings in the project was because we didn't even run up
a long-distance phone bill.

Note The inventory document is a compilation that I will add to my test plan, or put another way,
the inventory is the foundation of my test plan.

The Process in Brief

I like to start my test inventories in PowerPoint. PowerPoint is a good tool to help sketch the project
quickly in an outline. This tool makes it easy to change the order and importance of any item or slide
simply by dragging it wherever it should go and dropping it there. Even if there is extensive preexisting
documentation, PowerPoint makes it easy to account for all the major pieces and produce an outline
quickly.

In some projects, I am handed a stack of documents when I walk in the door; in others, I have to
interview the developers, sales staff, and customer service to find out what the project entails. In either
of these situations, I will probably construct the preliminary outline in PowerPoint and then export it to
Word for embellishment and details. The heading levels that I apply to outline elements in PowerPoint
are carried across to Word, and they allow me to import my rolled-up inventory items with no extra
work. I use the outline view in both PowerPoint and Word to organize inventory items and to perform
the rollup. And I can generate the short list that I will use in the columns of the inventory that I put into
table form either in Word or Excel.

I can use Word's internal RTF fields to link project documents into my new inventory. But for the most
part, I use hyperlinks for this purpose today.

Once the interviews are complete and I have my prioritization underway, I usually move the larger
projects to a spreadsheet. You can simply copy and paste the columns from the Word table to the
spreadsheet. For the expanded inventories that include cross-references to environments and
functions, a spreadsheet is the tool of choice because it is so convenient to keep the various tables on
individual pages in the spreadsheet workbook.

With the interactive data-sharing technology available today in the PC environment, it does not really
matter which of these tools you choose. They each offer certain advantages, and you can pass your
work back and forth between them with great facility. Don't be afraid of learning more about a Microsoft
Office tool.

Finally, and most progressive of all, I can import my spreadsheets directly into my SharePoint Team
Services Project Web site and allow the entire team to participate in the project. In the next sections, I
will show you what the process looks like in each of these tools.

Inventory in PowerPoint

The preliminary test inventory used in the test estimation process normally starts with items from the
project documentation-the requirement, function, and design specifications. I begin a list that includes
all of these items that I know about, and I add new ones as they appear. Often, the inventory is built
during design and review meetings. In any event, the process needs a starting place. I use PowerPoint
more and more frequently as the tool to document this early "coming together" phase of the test
inventory.

If the project documentation is not suitable, then a list of the primary functions and a list of all the menu
options in the software is a good starting point. These functions can be taken from the user interface or
source code listings, if necessary. Finally, the environment requirements need to be established and
documented as discussed in Chapter 7, "How to Build a Test Inventory." In this type of effort, I would
normally use PowerPoint to capture the initial test inventory and then import it into a Word document.

Figure 8.1 shows an example of this process. It features the sample inventory from the book. The
outline view of PowerPoint is a good recording tool. I use it extensively in meetings to keep my notes.

Figure 8.1: Inventory in PowerPoint Outline view.

PowerPoint is a powerful composition tool that is nimble enough to allow the user to keep up with a
spirited design meeting. You can make structural changes interactively and then share your resulting
outline with others. The outline is a properly formatted set of document headings, and you can easily
move it to other document formats like RTF, Word's DOC, and HTML.

You can export the PowerPoint outline directly to Word by selecting File, Send To, menu option, and
then selecting Microsoft Word. You then have several options that let you control the format of the
exported information in your Word document.

PowerPoint's terse bullet-oriented makeup cannot carry the detail layers forward. This may not be
perceived as a problem in a RAD/Agile shop, where there are no detail layers, but it can be crippling in
a plan-driven environment. When you actually have data under these topics that you have to keep track
of, you have outgrown PowerPoint, and it's time to move your outline to Word. Which brings me to my
next topic: keeping my inventory in a document.

Inventory in a Document

For my verbose inventory document, I want to collect or link all the project information that I can into a
single document, and I need the ability to get whatever view of that information that I want. After all, I
am not creating the inventory because someone told me to. I am creating the inventory because it is my
most powerful tool. As such, I need to be able to find anything quickly, and I need to view the inventory
in as much or as little detail as necessary at that moment. For example:

Initially, I need the high-level view; I don't want to get bogged down in details. But when I am trying
to construct scenarios, I need to be able to find out what's under the hood.

I need to move huge topics around without losing bits or leaving pieces behind. I want a single
source for my high-level views that will let me dig down through all the information that I have if
necessary.

I need to include all types of documents, pictures, equations, tables, and even spreadsheets.

For communications with others, such as meetings, I need to produce a short high-level view, and
for my test effort, I need a view that brings selected topics to the foreground without losing all the
other topics.

The Hood and What's Under It

As I mentioned, my management likes their information in short, succinct bursts. The man who was my
vice president throughout all my years at Prodigy maintained that if you couldn't fit it into three to five
bullets on a page, then you didn't understand it well enough to explain it to him. In all my years, I have
kept this as a guiding principle. It has served me well.

Consequently, when I prepare for a report or status meeting, I want the shortest list possible-without
losing the feeling that there is depth behind it. So I evolved a system to use the Outline view and the
table of contents field in my verbose inventory document to do this.

Inventory in Outline View

I can show only the highest levels or I can show all the main topics and their subtopics just by selecting
the heading levels that I want to display. A heading level 1 is the highest, usually the title of the chapter,
and I typically don't go below 5.

The Office Tools: Collaboration and High-Function Web Sites

I use Microsoft Word to create and maintain my verbose inventory document. Word's superior table
manipulation features, its ability to incorporate graphics and link multiple documents, and its
superior built-in graphing tools make it ideal for these tasks. one other feature that has become
very important is that these documents can be saved as Hypertext Markup Language (HTML) and
put online in an internal private Web site, or Intranet, to create a single-source test repository that
is usable by people who don't have Microsoft Office.

Any of the major Windows-based word processors will probably perform most of the tasks
described here. With Word, you can also send documents and receive them from the other Office
tools like PowerPoint, and you can copy and paste tables to and from Excel. There is little or no
conversion required on your part.

Today, I use Office 2002 because of its rich support for Web content and for the collaboration
features it offers. At the time of this writing, most people are using Office 2000 and Microsoft Word
for Windows version 6.0.

I use Microsoft SharePoint Team Services to power my test Web sites. The product is an add-on to
the Internet Information Server that works in conjunction with the FrontPage server extensions to
provide a host of Web components that interact with Microsoft SQL Server to create an automated
interactive Web site. The SharePoint Team Services site also supports direct editing of office
documents by the Office 2002 applications. The site offers a rich set of project management tools,
as well as document repositories. Figure 8.2 shows the home page of testersparadise.com, the
Web site that supports this book. All the content on this page is generated dynamically. You add
new announcements and events by simply filling out a form and submitting it. Team members who
have contributor status can participate in all the interactive activities on the site.

Figure 8.2: TestersParadise.com Home Page, an example of a high-function test Web site.

Using Office 2002 and its support for SharePoint Team Services, I have been able to move my
inventories to high-function SharePoint Web sites and Include even more powerful searching
capabilities across entire libraries of documents. The high-function Web sites also make It possible
to Include databases In my inventory, complete with stored queries and the ability to create ad hoc
queries on the fly. I am currently using Microsoft SharePoint Server and Microsoft SharePoint
Team Services Web sites to accomplish this. See http://www.testersparadise.com for examples.

To start the test inventory document, I can either import my PowerPoint outline as I just described or I
can create my outline directly in Word. Figure 8.3 shows the inventory document in Outline View mode.
This is the same inventory that we just saw in PowerPoint in Figure 8.1, after it has been imported into
Word. If you click on any of the + signs, the text below the heading is revealed. Outline view in Word
acts a lot like the rollup view in most project management tools. (If you are wondering why I don't just
use a project management application for this work, see the sidebar, Testing Is Not a Project-Or Is It?)
So, it is popular in status meetings. The problem is that you can't print it, which is probably why most
people use PowerPoint to display this outline. However, if I need to print the rolled-up view (outline) of
my inventory document, I use a table of contents. An example of this is coming up next.

Figure 8.3: Inventory from a Web project as an outline in Microsoft Word.

Inventory in a Table of Contents

When you assign heading levels to your inventory items, it is possible to get a succinct listing of them in
a table of contents, or TOC. To generate a TOC, put your cursor where you want the table of contents
to appear in the document. In Microsoft, click on the Insert menu, choose Field, then scroll down to
TOC and select it. Choose any formatting options you want, and click OK.

Figure 8.4 shows a table of contents complete with page numbers. I often take paper copies of the
inventory in this form to status meetings. If there are issues that we need to discuss, I can add them as
headings under the appropriate topic and print the table of contents with these items showing. My
management has always enjoyed the brevity of this kind of presentation in meetings.

Figure 8.4: The table of contents showing the inventory.

Testing Is Not a Project-Or Is It?

We should discuss project management tools for a moment so that you might benefit from my
experiences trying to use them in software test efforts, and also so you will understand why I am
not discussing any here.

Given that I am describing "rolling up" projects into a set of high-level items of work, many folks
ask, why not just use project management skills and tools to "manage" the test effort? The short
answer is that testing is not a project; it is a process. When a project is done, you check it off and
go on. You almost never look back, except to celebrate. Budget has nice start and end dates to
work with, and you can claim that you are finished spending money on that particular item. Testing,
on the other hand, is never "done." The test may pass this time and fail next time. Consequently,
we are never "done" testing; we simply stop at some point and ship the product. Budget is
generally not satisfied because of this and several other factors discussed throughout this book.
One reason why project managers don't want to touch a test effort is that it's too easy to end up
looking bad. Ask any project manager if you don't believe me.

Consequently, a pure application of project management methods doesn't work any better than
traditional software quality assurance methods. (Project management is a discipline that grew out
of civil engineering.) This book is full of the project management methods that I have found
workable in a test effort; however, the software tools are not so flexible. I spent two years trying to
use two of the top project management software applications in my test efforts because they were
required. Using them added a huge amount of documentation overhead to the test efforts, but
worse than that, we couldn't share the information from the management tool with the
documentation. So I had my outline (tasks) in one place and my detail layers in other places. It took
a full-time administrator just to make sure that tasks were linked to their supporting documentation
or point of origin-and, most especially, to somebody's budget.

I'm not saying it can't be done. I'm just saying that traditional project management tools have not
been "sharp" tools when applied to test efforts. On a brighter note, the SharePoint Team Services
Web sites offer strong support for project tools, like task lists. They also are good at sharing data,
so you can import your task list from an Excel spreadsheet, and you can export it back out again so
it can be used elsewhere. One final note, a product to watch for possible uses in a test effort is
Microsoft Project, which is now Web-based. Who knows, it may end up bringing project
management techniques to the test effort.

For the next step, creating a table to contain the inventory, it would be nice to just copy the items from
the TOC, but unfortunately, in a Word document, the table of contents cannot simply be copied to
another document and remain static during that process. It cannot because a TOC is a dynamically
generated field where the headings in a document are collected.

One way to produce a permanent list from the table of contents field is to copy the table of contents and
paste it into a new document. Use the Save As menu option to select the document type: Text with Line
Breaks. This will remove the special field coding, leaving only the plain text of the categories. Close the
text file. Repeat this procedure for each document that contains inventory items you want to gather.
This process allows you to extract the inventory items so that you can do other things with them, like
put them into a table or a spreadsheet. I will discuss building a table with them next.

Inventory in a Table

When you put your test inventory into a table, you can sort it by any column and perform calculations,
like adding up the number of tests or the number of hours required to run a group of tests.

When you want to create the test inventory in a table, use the Insert File option to insert the plain text
tables of contents into the test inventory document. Organize the categories in any way that makes
sense, but keep each test item or category heading on its own line.

When you have assembled a list, select all of the inventory items and use the Convert Text to Table
option under the Table menu to turn the entire listing into a one-column table. Add columns to this table
as you need them. These columns will hold the individual counts for each row, or test, in the inventory.

Tip If these topics are new to you, read the sections on document headings and automatic tables in
your word processor user guide or online help for specific instructions.

The New Function item in Table 8.1 is an example of functions taken from design documents. View
Mini Clip is a menu option from the user interface. The two-credit-card limitation might have come from
the interface or from some design or requirements document.

Table 8.1: Preliminary Inventory from a Web Project

SAMPLE APPLICATION (RELEASE 2.0)

Bug Fix Information

Fix for Error #123 (see req. B477)

Fix for Error #124 (see req. B501)

New Function (see req. D071 & D072)

New menu option #3: View Mini Clip

Purchase option: Not available in some states

Minimum order must be $30.00

Method of payment limited to 2 credit cards

Structural / Environment Information

Enhancement-automatic detection for 50 modems. (Rel. 1 had auto-detect for 3 classes only)

Software installation is automatic at logon

Existing Application Base Function

Standard base function tests still apply: All test suites for Version 1.0 will be run.

Our Best System Simulator

(automated suite BSIM01 67% coverage of Release 1 Test Inventory for the Best Simulator
functionality)

Message Data Flow Checker

(automated suite DFCHECK 47% coverage of Release 1 Test Inventory for the Data Flow
Checker functionality)

Screen Comparison-Pixel Viewer

(automated suite PIXVIEW 77% coverage of Release 1 Test Inventory for the Pixel Viewer
functionality)

Environment Catalog

Operating Systems:

Client: Microsoft Windows 3.1 and higher, Win 95, Win 97, NT 3.51 with patches from #4 pack
applied.

Host: To be determined.

Network: Under investigation by Net, Engineering plan due?

Hardware:

Computers: All machines on the operating system compatibility list.

Modems: All machines on the operating system compatibility list.

Notice the hyperlinks (underlined topics) in the functions that link to the requirement. The tests
identified from these documents are usually high-level and general in nature, so they correspond to a
category or type of test. Subsequent analysis will add tests to each of these categories. Often the
categories evolve in the test suites. These categories usually appear as a heading level one, or the
highest-level heading in the test inventory. Bug Fix Information in Table 8.1 is another example of using
existing documents or references to existing documentation, such as the bug reports to define the
testable item.

If you plan to construct your inventory using existing documentation, get electronic copies of the
relevant specifications and requirements documents from your project. If electronic copies of the
document are not available, consider faxing or scanning the documents and running character
recognition software to produce an electronic copy. You have several choices on how to include your
documents. You can use the include files method to link individual files into your document, or you can
use hyperlinks within your document. Either way, if linked documents are updated, your document
automatically reflects the changes. However, the Word Outline view and table of contents may not be
useful to you, since Word does not follow hyperlinks when building these views. Therefore, your outline
won't be easy to update automatically.

One of the major obstacles in document automation is the lack of a common standard for
documentation. The developers and testers may use text files or a PC-based word processor, while the
documentation group may use a publisher's tool such as Quark or an Adobe pdf file. Make sure that all
the tools can produce a common high-level file format that supports the inclusion of graphics and
tables. Acceptable examples in Microsoft Word document format are Rich Text Format (RTF),
Standard General Markup Language (SGML), and HyperText Markup Language (HTML). I prefer HTML
because it is easier to automate the creation and distribution of HTML files than it is with any of the
other formats. HTML documents are small and can be easily distributed across networks and viewed
on any platform that has an HTML browser.

Typically, project documents come in any number of formats. Start by converting any documents that
are not in the correct format. Next, make sure that each document has a table of contents. Generate
one if necessary. If the document was prepared in a text format or without heading level definitions, it
will be necessary to apply the correct heading level style to the document's headings before a table of
contents can be generated automatically. This operation is worthwhile because these headings will be

used throughout the test effort.

Inventory in a Spreadsheet

When you begin to add environments and functions columns to your table, it can quickly grow beyond
Word's capabilities. When this happens, it is time to copy your table to a spreadsheet. One of the great
things about the spreadsheet is that you can add new pages (called sheets in Excel) as you need them.
Figure 8.5 shows the inventory after it was copied into a new workbook. The inventory spreadsheet has
sheets for the environmental catalog, functions, and test scenarios. All of these sheets are linked. The
spreadsheet makes it possible to sort and filter the data. These features allow you to answer questions
like, "What are the most important tests I can run to test EDI?" in seconds.

Figure 8.5: The environment catalog sheet from the inventory spreadsheet.

I always reserve budget in my projects for a spreadsheet specialist, a mechanic. By setting up the
automatic calculations and shared data values, a good mechanic can create a spreadsheet workbook
that instantly updates data on related sheets whenever you change anything in the spreadsheet. The
workbook can also present the latest results in pivot charts, graphs, and whatever visualization is most
effective for you at the moment.

When it comes time to test, I sort the test scenarios and filter the sheet to produce a list of the tests
that have to be run to test a specific PDR, feature, or environmental aspect, such as a particular
database. I can copy the resulting worksheet, print it, or publish it on the Web. My testers have a
succinct list of tests that need to be performed.

Fundamental Principle: Never Rekey Data

The quality assurance process in software development is already in a position where it cannot
keep up with development technologies.

Any process that requires the same data to be manually rekeyed into the system is badly flawed.
Every time the same data is manually rekeyed, money is wasted. Every data entry point is a source
of errors being introduced.

The cost of tracking and integrating review commentary increases with the number of reviewers.

Every time paper documentation is circulated, the potential for version control problems is
expanded. The probability of outdated paper-borne information causing failure rises, and the cost
of ensuring that everyone is on the same version increases.

Whatever tools and processes are selected, make sure that the documents are sharable and come
from a single source.

Inventory in a High-Function Web Site

As I write this, I have to start by saying that putting your test collateral on a Web site is not always
efficient. If the culture in your company does not embrace this technology yet, or if the control of Web
resources is controlled by feudal Web lords, then I recommend you tread lightly on this topic. Rest
assured; it won't be this way for long.

I tried to use traditional HTML document-based Web sites to aid my test projects for most of the 1990s.
They were only "one-way" tools at best. At worst, they took resources away from the actual testing and
gave the vultures something else to criticize. With few exceptions, a straight Web site isn't good for
much more than publishing bug stats and test documents.

A high-function Web site is a different animal, however. The SharePoint Team Services Web site is a
collaborative and interactive place. First of all, the administrative overhead is almost nothing once the
administrator learns the product. It takes about five minutes to generate a fully functioning interactive
Web site with five built-in levels of group security: browse, contribute, author, advanced author, and
administrator. In addition, there is a full complement of pages containing lists (see Figure 8.6), including
a document folder, announcements, events with a calendar, and a link list-all ready for your team to
use. And, of course, you can create more if you need them.

Figure 8.6: The SharePoint Team Services Lists page.

The Team Site is powered by SQL Server and several types of canned functionality with which you
never need to worry. You customize the way your features work and administer your site using online
forms. You don't need to know HTML, although it doesn't hurt, and you don't need to use a Web page
creation tool like FrontPage, but that doesn't hurt either-especially if you want to customize your pages
as I have for testersparadise.com. The List Builder tool is happy to absorb spreadsheets and allow you
to create custom editable views of them.

Other features included out of the box are any number of forums; announcements; events, complete
with calendar; and several built-in views, such as Today's Events, My Events, and All Events. The list
enumeration page is shown in Figure 8.6. There is a contacts list that team members can add to, a link
list where team members can add hyperlinks with explanative text. The system provides several other
canned lists, and you can create any number of custom lists.

List data is stored in an SQL Server database, so when someone edits the data on one of the views, it
is updated in the database and the new value is automatically sent the next time anyone requests a list
that contains that data. So there is no worry about propagating stale data from multiple data sources.
SharePoint Team Services takes care of all the data updates and concurrency issues.

There is also a survey tool that allows you to create surveys on the fly. Surveys are a good consensus-
building tool. For example, I like to use them when I establish priorities. (An example of this type of
survey is in Chapter 9, "Risk Analysis.") All of these features can be created and modified by whatever
groups the administrator chooses.

Figure 8.7 shows the PDR view of the inventory after the data was imported from the Excel
spreadsheet. Notice the menu on the left side of the page; it shows three views available. These
hyperlinks to other views are very much like the tabs on the bottom of the sheets in the spreadsheet.
These views are easy to create, and you can create as many of them as you need from the data on the
spreadsheet. I am often asked to create special views for different groups, like management.

Figure 8.7: PDR view of the inventory in a Team Services list.

Figure 8.8 shows the Environment view of the inventory list. The user can sort any list view by any
column simply by clicking on the column heading. The user can also filter the views so that only items
meeting the filter criteria are displayed. For example, you can filter all PDRs by their group, display only
the PDRs that use a particular environment, and so on. Users can also subscribe to a list and receive
automatic notification via email when something changes on the list.

Figure 8.8: Environment Catalog view of the inventory in a Team Services list.

As nice as the lists are, it is much more difficult to keep running totals and perform other calculations in
this canned environment; so the spreadsheet still offers some advantages. The good news is,
permissioned users can export a list back to Excel 2002 and work on the data there.

Summary

I have described the tools and the process that I use to automate the creation and maintenance of my
test inventories. Obviously, different-sized projects require different treatments, as do the various
development approaches. The approach I have described here is both flexible and scalable.

PowerPoint is a good tool to use when you want to create an outline. When your need for detail
outgrows PowerPoint, move your outline to a Word document. Word allows you to develop both the
terse outline for meetings and the detailed in-depth layers required to master the project.

When your working inventory gets too big for a Word table, move it to the spreadsheet. Don't be shy
about hiring someone very knowledgeable in creating custom spreadsheets if you don't want to do this
work yourself. The work they do for you will add hugely to the quality of your test contribution, and your
credibility.

If you can move to a high-performance Web site without risking the farm and your reputation, do it. The
sooner you start learning to leverage this incredibly powerful emerging technology, the better. A high-
function Web site is not the answer to all your problems, but it's a good start. See
www.testersparadise.com for some examples of what a Share-Point Team Services Web site can do.

Finally, do not be afraid to invest in yourself. Learn more about the tools you have, and don't be afraid
of the new stuff. It requires some learning, but it can be worth it.

Chapter 9: Risk Analysis

Overview

"What are you going to test?" asked the vice president.

"The Most Important things," the tester replied.

"And how do you know what the most important things are?" asked the vice president.

Therein lies the tale.... Again, I was the tester in this conversation, and in truth the process of
answering this question continues even today.

Engineers have been performing risk analysis for thousands of years. (It's been done ever since the
first building fell down and the engineer's head rolled shortly thereafter.) It's interesting that some
entrepreneurs in software testing houses are reinventing it as a marketing concept just when the heat is
coming up under the software engineers.

To mitigate the risk of some event causing damage, you must first estimate the probability that the
event will occur. This probability has to be translated into some quantity, usually represented as a
percentage-for example, "There is a 50 percent chance that this will happen." Next, you need to
determine the severity of such a failure. Severity is usually measured in currency, such as dollars, and
loss of life. If the severity is minor, then even a high probability of occurrence may still be judged to
cause a trivial problem.

If the severity of the failure and its probability of occurrence rise above a certain threshold, then it
warrants preventative action. In engineering, a standard is put in place to ensure that the correct
preventative actions are taken during construction so that if the event occurs, it will not cause the
structure to fail. This standard is a rule.

In structures, the need for standards has long been understood, so we have building codes, which are
sets of rules. Building codes ensure that all buildings are built to have enough structural integrity to
withstand the demands that will probably be placed on them.

The probability that a thing will or won't occur can be calculated under certain circumstances-especially
if you can answer a question like, "What was the outcome last time?" or "Do we know if the platform
can really do what the maker claims it can?" If you can't provide a good measured answer to these
questions up front, then you will need a strategy for dealing with the events that will occur later in the
process. If the probability and severity cannot be measured, then they must be estimated. MITs risk
analysis provides a formal method for both estimating up front and dealing with events as they unfold.
In this chapter, we look at this formal approach to establishing risk and prioritizing the items on the test
inventory.

MITs risk analysis uses both quantitative and qualitative analysis to establish a numeric value for risk
based on a number of specific criteria. In the early planning phases of a test effort, this risk number is
used to focus test resources to size the test effort. As the inventory evolves, the risk ranking plays an
important part in actual test selection and optimal test coverage determination.

The Risk Analysis Process in Brief

I normally use MITs risk analysis for different purposes during different phases of the test effort. At the
beginning of a project, I use risk analysis on the initial inventory to prioritize the items on the inventory.
The process helps build consensus on test needs and focuses the test planning effort on the most
important items. This helps me size the test effort and prepare my cost and time line estimates. I
usually prepare an initial test schedule at this time to coincide with the order of the deliverables. This
helps me plan my resource needs for the test system and testers over the course of the test phase.

In my case, this estimate, covered in Chapter 10, "Applied Risk Analysis," forms the basis of my
contract or agreement to test. For a more traditional test role, it would form the basis of the test plan. In
my case, this inventory, complete with risk ranking, will be presented to management for review and
approval. In addition to using risk analysis to propose the appropriate test coverage, I may also use risk
analysis on my test results in order to show management the value of the test effort, as in the case
study later in the chapter, Case Study: The 401(k) Web Project.

In the next stage, path and data analysis, I will use risk analysis to select which tests to run and
estimate the resource needs of the optimal test effort. In a heavyweight project, I will perform these first
steps during the planning stage. I will use the MITs risk ranking and the number of tests identified to
determine how many of the total number of tests identified for the item will be run. This is the percent
test coverage that I will propose as optimal for the effort. I will repeat this process for each inventory
item. Once I have identified the tests and calculated the number of tests required by the MITs risk
rankings, I can complete a detailed test estimate. This process is discussed in detail as we proceed
through Chapters 10 through 13.

In MITs, we use the risk index to determine how much we will test an item. Each item on the test
inventory is ranked based on "how critical" a failure would be if it occurred in the item. The criticality of
a failure in the test item is arrived at by applying a set of ranking criteria to the hypothetical failure.

The more critical a failure would be, the higher the MITs rank (the smaller the number) will be for the
test and the more extensive the test coverage will be. For example, a rank of 1 results in 100 percent
test coverage. A rank of 4 results in a 25 percent test coverage. This topic is covered in detail in
Chapter 10, "Applied Risk Analysis."

If I am dealing with a lightweight project, I will probably do my path and data analysis on the fly when I
get the first version of the application or system. Once I have identified tests for an item through my
analysis, I record this number of tests for the item in the inventory. Then I calculate the actual percent
test coverage achieved during the effort.

I use this number after the product has been shipped to calculate the performance of the test effort.
This is a good metric to use when attempting to demonstrate the value added to the product by the test
effort.

I mention this whole process here because I have seen too many testers balk at performing risk
analysis, perceiving it as an unnecessary extra step. It is not extra, only the formalization is new-writing
it down. If the tools used in this book are used, this step is not a hard one. But if testers don't
understand that risk analysis has many uses, and that it will be reused throughout the test effort, they
tend to ignore it. Risk analysis is a powerful technique that is useful throughout the test effort and
beyond, into operations.

Benefits of Risk Analysis

In recent years, I have had better luck convincing managers of the value of risk analysis than testers.
Conducting formal risk analysis on the project not only gives managers a more defensible position
because they can demonstrate that they used a best-practice approach, but more importantly, it costs
so little and provides a powerful tool that supplements traditional project management tools. It also gets
everyone in the effort on the same page with respect to scope and priorities.

Ensuring Correct Focus for the Test Effort

A major part of the payback for performing MITs risk analysis is the assurance that testing is focused
on the most important items. You will pick the best tests, perform fewer tests, and get a higher return
on them than if you didn't perform risk analysis. And you will save the company more money.

You can have applications, systems, components, databases, even Web services (and apples and
oranges and peas and spaceships) on your inventory-it doesn't matter, as long as each one is testable.
Once any item has been added to the inventory, you can analyze it to whatever level necessary to
identify its most important elements. For example, if the project requirements are on the inventory; they
are testable. Under each requirement, there is some kind of program unit, system, module, or
component; these are testable as well. (There also may be manual processes, like faxing or data
entry.) Under each program unit are paths and data; these will have tests associated with them. What
is the rank of these tests? How much will you test them? Which ones will you test first? The MITs risk
analysis answers these questions.

In a plan-driven effort, these tests can be planned in advance, through analysis of the requirements and
the actual functionality. Theoretically at least, you can rank these items based on the requirements and
then use path analysis and data analysis to design the tests for them. And you can do so without
having seen the software.

Publishing Testers' Assumptions

One of the great benefits of this MITs system is that it is published. Publishing the risk matrix is a type
of assumption publishing. Ranking documents the assumptions of the testers. Everyone has the
chance to review and comment. If faulty assumptions are not pointed out, it is not the fault of the tester.
And other groups can also use the information.

Sometimes, however, it is hard to live with that publicity. In the real-world shipping example from
Chapter 7, we testers were criticized by developers for applying risk-ranking criteria to their projects,
but their vehemence and righteous indignation served to energize them into providing not only the
ranking but the test order as well. This leaves testers with an excellent tool and guide map through a
huge project.

Promoting Reuse by Other Groups

One of the classic test waste scenarios happens when project personnel are changed. The new people
don't know the application, or the tests, or what does what. So they tend to ignore the existing test
collateral and invent their own. Since they don't know anything, the new collateral usually lacks maturity
and depth of the existing material. The company has just paid good money to take a step backward and
lose time as well.

The first question that someone new usually asks is "Which tests should I run to find out X?" The
variable X can be replaced by virtually anything. If your test collateral can't provide an answer as simple
as this, then you have failed to pass on your legacy and the new tester will probably start from scratch.

With MITs, all you need to do to answer the question is filter and re-sort your inventory by the test
category that includes X and then by the MITs rank. They don't have to know anything about the
application; all they have to do is look at the ranked test inventory in order to know where to start.
Adding new categories to the test inventory to answer questions like this is one of my most important
jobs. It shows the depth and value of the tests in the inventory, serves as the basis for funded new test

development, and gets my tests reused.

This system works so well that other groups can also benefit from the tests. Operations is almost
always the first beneficiary of the test inventory after the testers. They can use it to quickly identify just
the tests that they need to create system-targeted diagnostics suites. Figure 9.1 shows the spreadsheet
inventory from the real-world shipping example. It shows the "Day in the Life of a Car" test cases sorted
by test order and priority. Notice that the view also shows the environments touched by each scenario.

Figure 9.1: The spreadsheet inventory showing the "Day in the Life of a Car" test scripts, sorted by
test order and priority.

Providing a Powerful Project Management Tool for the Test Effort

By itself, the inventory is a very nice parts list, useful for keeping track of items. When you add a priority
to those items, the inventory becomes a powerful tool for answering all kinds of important questions. If
you take one additional step and add a sequencing field like "Test Order," you have created a project
management tool that is uniquely applicable to the test effort.

How the Inventory Can Be Used

In the real-world shipping project, development and operations both benefited from the inventory. One
of the biggest reasons was that careful attention was paid to identifying the environmental requirements
of each PDR and major function. So the inventory could be used as a checklist by operations when
preparing test systems for various stages of testing. For example, systems managers were planning a
day-long meeting to determine the order in which they needed to bring their test systems online. We
testers arrived at the meeting with several different printouts, like the one shown in Figure 9.2.

Figure 9.2: The shipping company's inventory showing the test order of the most important tests
for the HRIS system.

Figure 9.2 shows the Web-based inventory and the environment catalog for the real-world case study
of the shipping company. This listing shows the environmental catalog portion of the inventory; it has
been filtered by the HRIS column. Notice the small funnel icon below the HRIS column heading, to
show all items that touch the HRIS system. The list was then sorted by priority and finally by test order.
Also notice the small arrow beneath the "Test Order" column heading. The questions answered by the
view in Figure 9.2 are "What PDRs impact the HRIS system, and what order will I have to prepare for
them?" and "What are the other systems that will need to be ready?"

The process of filtering and sorting took less that a minute, and the resulting list shows not only the
most important inventory items for this system but also the order in which they will be tested. The
managers were finished with their meeting in less than an hour, and they requested several additional
views of the inventory. The inventory became one of the most frequently consulted (and quoted)
documents in the integration effort.

Building the Inventory on-the-Fly

The real-world shipping project was plan-driven. But the prioritized inventory is a valuable management
tool in a RAD/Agile effort as well. You just don't construct it in quite the same way. In a RAD/Agile
effort, since you will probably be handed some software to test with little or no idea what it is or what it
will do, you will probably build your inventory as you go.

As soon as you have access to a functioning application, you can identify major functionality, prioritize
it, and record it on your inventory. Once you have explored a function (inventory item), you can add the
detail layers to your inventory. Sooner or later, features coalesce and become stable. If you have been
building your inventory as you go, you will have an up-to-date report of everything that you have tested
at all times. So when management wants to know if it's shippable, you have good answers in your
hand. See Case Study: The 401(k) Web Project later in this chapter for an example.

A mature test inventory in a RAD/Agile effort also fuels the user guide and instructions to customer
service. It is the definitive source for how things really work. In many RAD/Agile development efforts
today, my title is actually technical author, not tester.

If you are involved in a RAD/Agile effort, you won't have a lot of time to plan, measure, or estimate, but
you do want to be prepared, because you will be expected to be ready to test. If you are involved in a
plan-driven project, it will be necessary and expected that you measure, plan, and estimate the size of
the test effort in advance so that it can be budgeted and fitted into the time available. This brings us to
the fundamental difference between the two development strategies and how they relate to risk.

Project Management Strategies and Risk

Spending money for information, or MFI, is generally considered to be part of the plan-driven
management strategy. Reserving money for flexibility, or MFF, is considered to be part of the
RAD/Agile management strategy. In the real world, I have observed that there is a balance between
MFI and MFF in all projects. Moreover, testing is a critical element of both strategies. So, whether
management wants to plan a little or a lot, they still need to know what and where the risks are. I find it
ironic that whether management believes that they need testers to determine risk or not, managers use
their own type of risk analysis to determine how to divvy up their budget in order to balance their MFI
with their MFF. This managerial risk analysis is usually established informally using a "gut feel"
approach, which is just another flavor of the I-feel-lucky approach.

Examples from the Real World

The plan-driven management is willing to spend MFI to mitigate risk when the outcome is uncertain, as
with new technologies or systems. It is used for unpredictable and "all or nothing" scenarios, when we
don't know actual usage patterns or system limits. These are things that can be measured or simulated
in advance of development. That way, there is time to change course before the project hits the wall.
Oddly enough, the best example I ever saw of good use of MFI was in a RAD project.

Real-World Money for Information

My RAD client was developing a specialized messaging server to run on a new carrier class unified
communications platform. From the beginning, we were suspicious that a core server component, built
by a third-party provider, would not scale to meet the required service levels. The MITs risk analysis
showed that the successful performance of this single core component was the single most important
factor to the success of the entire product development effort. Because of this information, my RAD
client was willing to spend quite a bit of money trying to establish the real-world limits of this core
system-before they invested heavily in developing their own server.

It was fortunate that they did invest in a good MFI test effort, because the core system did seem to
scale, but it proved to be fatally flawed in a way that no one expected: It was built on a nonstandard
protocol that was incompatible with the standards used by most carriers. The MFI test effort to establish
the credibility of the core system probably saved this RAD division's financial life. The platform was
never deployed. Their development efforts would have been for nothing, and all their investment would
have been lost.

This was an extreme use of MFI. Normally, risk analysis conducted by the testers doesn't venture into
the "actually test it and find out" stage. The more common use of MITs risk analysis is to identify the
areas that testing should concentrate on.

On the other end of the spectrum, and in the interest of balance, is one of the best examples of MFF
that I ever saw. It was accomplished by a plan-driven development manager from an office supply
company. The office supply company had purchased an e-commerce engine from a heavyweight third-
party vendor that promised to ease their transition from client/server to an HTML-based service running
on a Web server. We look at this real-world scenario in the next section.

Real-World Money for Flexibility

The office supply company had implemented and integrated most of the system and had begun user
testing by the customer service department when they realized that they had major performance
problems in the browser. While they were trying to establish exactly what was causing the problems,
both major browser makers released new versions, and it was discovered the system did not work on
either new browser.

My company had been commissioned to perform the user acceptance testing and a human factors
review on the product for one of the office supply company's business partners. I looked at the code
that was being sent to the browsers and quickly realized that the system was one enormous applet that
simply took over the browser. Their "Web" pages were not HTML, but rather, huge scripted files that
were being processed by the applet in the client machine. Further, the third-party front-end bypassed

the Web server and all things Internet, and relied entirely on its own monolithic proprietary application
to process every screen for every client.

This client system that was supposed to be browser-based contained almost no HTML. Instead, it was
packed with Visual Basic (VB) code. Apparently, the third-party programmers didn't bother to learn any
HTML. For example, one screen that displayed query results in a table used over 70 lines of scripted
code to set the font for the table and a background color for the table's heading row. This feat can be
accomplished in one line of HTML with two style definitions: font and background color. Once I had
seen the code, it was clear why there were performance problems.

The browser incompatibility problem had a similar cause. To take control of the browser, these
developers had written specific code instructions to the browser. The newer releases of the browser did
not accept this code, and so the applet did not work at all. My company's client failed the product, and
our report was passed along to the office supply company, where it caused a firestorm in the office
supply company's development group.

The development manager from the office supply company handed the third-party contract to his legal
department with a sticky note on it reading, "Get our money back. This isn't HTML and it isn't a Web
application." Then, he came to visit my test team. He said he wanted to see how we tested the product,
and he wanted to borrow a book on HTML. He spent several hours with us going over our test results.
When he left, he took several books and the names of some reputable Web programming consultants.

My company completed its testing and human factors review for the business partner, and some very
good consultants joined the office supply company's development team. The consultants took the
functional requirements and the results of our user acceptance testing and human factors reviews, and
they turned out functioning screens within three weeks. This was just about the time frame we had
estimated for the bug fixes to be turned around.

Meanwhile, the office supply company's own developers did some crash learning on integrating their
own systems, which they knew well, with the standards-based Web server's Internet Server Application
Programming Interface (ISAPI). The system was finished on time, and the business partners were very
happy with its features and the maturity of its workflow.

If you are wondering where the money came from, the rewrite actually cost less than the original
contract with the heavyweight third-party vendor. The developers at the office supply company learned
some new skills, and the office supply company bootstrapped itself into the Web on its own.

So contrary to popular myth, RAD/Agile developers can plan, and plan-driven developers can change
the plan. Understanding risk and being ready to deal with the outcome, or better still, avoid failures
altogether, is independent of the development methodology. It's just good management.

Agile and plan-driven teams use different approaches. Agile will set up to absorb late-breaking
changes; plan-driven teams will try to plan for them early by charting contingencies. We testers don't
need to be much concerned with how the developers design; all we need to know is what i t is supposed
to do. Once you have your inventory to keep track of the testable bits, you can prioritize them and
reprioritize them at will. I will talk about this again in Case Study: The 401k Web Project later in this
chapter.

MITs helps the plan-driven effort predict where the difficulties will be because it is a formal methodology
that supports a thorough and flexible analysis of project elements. This approach helps the Agile
project retain flexibility because it uses as much or as little collaboration and measurement as befits the
project at hand, and it produces visible results very quickly. MITs also makes it is easy to rebalance the
focus of the test effort quickly. Even though this falls into the MFF category, it is popular with sensible
managers from all parts of the development rainbow.

As with the inventory, the risks will be different depending on the type of project. However, the tools
you, the tester, need to succeed are pretty much the same in both types of projects. In the end, it
doesn't matter which development methodology is in use. Risk is risk, and the better the project risks
are understood, the better they can be mitigated.

MITs Risk Analysis

In MITs, the process of estimating risk involves identifying "what" the risk is and "how much" is required
before action will be taken to mitigate that risk. These answers are provided through performing
quantitative and qualitative analysis.

We discuss these topics throughout the rest of this chapter. In the next phase, actual test selection, the
risk analysis ensures that the selected test set has the highest probability of packing the biggest punch,
smallest test set, highest yield. We discuss this in the following chapter, "Applied Risk Analysis."

Quantitative and Qualitative Analysis

Both quantitative and qualitative analysis came from chemistry. They go back before the Renaissance
in Europe. You probably remember reading about efforts to turn lead into gold. Well, that's where these
methods started. Chemistry is what happened to alchemy when the I-feel-lucky approach to turning
lead into gold gave way to methods and metrics.

What are quantitative and qualitative analysis? Let's examine dictionary-type definitions:

Qualitative analysis. The branch of chemistry that deals with the determination of the elements or
ingredients of which a compound or mixture is composed (Webster's New World Dictionary).

Quantitative analysis. The branch of chemistry that deals with the accurate measurement of the
amounts or percentages of various components of a compound or mixture (Webster's New World
Dictionary).

Risk analysis deals with both understanding the components of risk and the measuring of risk.
Recognizing "what bad things might happen" is not "risk analysis" until you quantify it. You could limit
yourself to one or the other of these two forms of analysis, but if the object is to provide a solution, you
are missing the boat.

Next, you have to quantify what are you willing to do to keep it from failing. "Try real hard" is not an
engineering answer. It contains no measured quantity. But it's the one we've been hearing from
software makers. Getting real answers to these questions does not require "art." It requires
measurement. And it requires that management allocate budget to the test effort to do so.

For instance, if you are going to make cookies, it isn't enough to know what the ingredients are. You
need to know how much of each thing to use. You also need to know the procedure for combining
ingredients and baking the cookies. These things taken together create a recipe for the successful re-
creation of some type of cookies. If the recipe is followed closely, the probability for a successful
outcome can be estimated based on past performance.

For this risk cookie, my "ingredients" are the criteria that are meaningful in the project, such as the
severity, the cost of a failure, and the impact on customers, users, or other systems. There are any
number of possible criteria, and each project is different. I start my analysis in a project by identifying
the ones that I want to keep track of.

One of the easiest things to quantify is cost. We usually use units of time and currency to measure
cost. Even if what is lost is primarily time, time can have a currency value put on it. Management seems
to understand this kind of risk statement the best. So, it's the one I look for first.

After identifying the risk criteria that will be used to evaluate the items in the inventory, I want to
determine the correct amount of priority to give each one, both individually and in relation to one
another. I use an index to do this.

The MITs Rank Index

The MITs Rank Index is normally a real number between 1.0 and 4.0. A rank index of 1 represents the
most severe error. A Severity 1 problem usually is described using terms like shutdown, meltdown, fall
down, lethal embrace, showstopper, and black hole. Next is a rank of 2; this represents a serious

problem, but not one that is immediately fatal. A rank index of 3 is a moderate problem, and a rank
index of 4 is usually described as a matter of opinion, a design difficulty, or an optional item.

Rank indexes are real numbers, so a rank index of 1.5 could be assigned to a risk criteria. The decimal
part of the index becomes important when we use the MITs rank index to calculate test coverage. This
topic is covered in detail in Chapter 10, "Applied Risk Analysis."

Weighting an Index

Several types of weighting can be applied in addition to the rank index; for example, two additional
factors that are often considered when assigning a rank index are the cost to fix the problem and the
time it will take to fix the problem, or the time allowed to resolve an issue. The time allowed to resolve
an issue is a normal part of a service level agreement, or SLA. This item will become increasingly
important in Web applications, since hosting and Web services are both provided with SLAs. Failure to
adhere to an SLA can become a matter for loss of contract and litigation.

Table 9.1 provides a simple index description and some of the criteria that might be used to assign a
particular rank. Like everything else in MITs, you are encouraged to modify it to meet your own needs.
However, the index should not become larger than 4 in most cases, because it translates into such a
small percentage of test coverage that the benefits are normally negligible.

Table 9.1: MITs Rank Index Description and Criteria

Rank = 1 Highest Priority

Failure: Would be critical.

Risk: High; item has no track record, or poor credibility.

Required by SLA, has failed to meet an SLA time or performance limit.

Rank = 2 High Priority

Failure: Would be unacceptable.

Risk: Uncertain.

Approaching an SLA time or performance limit, could fail to meet an SLA.

Rank = 3 Medium Priority

Failure: Would be survivable.

Risk: Moderate.

Little or no danger of exceeding SLA limits.

Rank = 4 Low Priority

Failure: Would be trivial.

Risk: May not be a factor.

SLA-Not applicable.

The Art of Assigning a Rank Index

In some cases, there is one overriding factor, such as the risk of loss of life, that makes this an easy
task. When there is such a risk, it becomes the governing factor in the ranking, and assigning the rank
index is straightforward and uncontested. The rank index is 1.

However, in most cases, assigning a rank index is not so straightforward or obvious. The normal risk
associated with an inventory item is some combination of factors, or risk criteria. The eventual rank that
will be assigned to it is going to be the product of one or more persuasive arguments, as we discussed
in Chapter 3, "Approaches to Managing Software Testing."

The rank index assigned to a MITs ranking criteria may be a subtle blend of several considerations.
How can we quantify multiple ranking criteria? It turns out that assigning a rank index is something of
an art, like Grandmother's cookies. A lump of shortening the size of an egg may be the best way to
describe the risk index that you should apply to a potential failure. For example, consider the following
problem from my testing of the 401(k) Web Project (discussed later in the chapter):

One of the errors I encountered caused my machine to lock up completely while I was trying to
print a copy of the 401(k) Plan Agreement document from a downloaded PDF file displayed in my
browser. I was supposed to review the document before continuing with the enrollment process.
When the machine was rebooted, the PDF file could not be recovered. I tried to download the file
again, but the system, thinking I was finished with that step, would not let me return to that page.
I could not complete the enrollment because the information that I needed to fill out the rest of the
forms was contained in the lost PDF file.

I reported this failure as a Severity 1 problem because, in my opinion and experience, a normal
consumer would not be willing to pursue this project as I did. Remember, this was not the only blockage
in the enrollment process. As far as I am concerned, an error that keeps a potential customer from
becoming a customer is a Severity 1 error. Developers did not see it this way. As far as they were
concerned, since the file wasn't really lost and no damage was really done, this was a minor problem, a
Severity 3 at most.

Fortunately, the MITs ranking process allows us to balance these factors by using multiple ranking
criteria and assigning them all a rank index, as you will see in the next topic.

The MITs Ranking Criteria

Over the years, I have identified several qualities that may be significant factors in ranking a problem or
the probability of a problem.

Identifying Ranking Criteria

The following are qualities I use most frequently in ranking a problem or the probability of a problem:

Requirement

Severity

Probability

Cost

Visibility

Tolerability

Human factors

Almost every different industry has others that are important to them. You are invited and encouraged
to select the ranking criteria that work for your needs. The next step is to determine the appropriate
rank index for a given ranking criteria.

Assigning a Risk Index to Risk Criteria

The way that I determine the rank index for each ranking criteria is by answering a series of questions
about each one. Table 9.2 shows several questions I ask myself when attempting to rank. These are
presented as examples. You are encouraged to develop your own ranking criteria and their qualifying
questions.

Table 9.2: MITs Risk Criteria Samples

Required

Is this a contractual requirement such as service level agreement?

Mitigating factors: Is this an act of God?

If the design requirements have been prioritized, then the priority can be
transferred directly to rank.

Has some level of validation and verification been promised?

Must have =
1

Nice to have
= 4

Severity

Is this life-threatening? System-critical?

Mitigating factors: Can this be prevented?

Most serious = 1

Least serious = 4

Probability

How likely is it that a failure will occur?

Mitigating factors: Has it been previously tested or integrated? Do we know
anything about it?

Most probable =
1

Least probable
= 4

Cost

How much would it cost the company if this broke?

Mitigating factors: Is there a workaround? Can we give them a fix via the
Internet?

Most expensive =
1

Least expensive =
4

Visibility

If it failed, how many people would see it?

Mitigating factors: Volume and time of day intermittent or constant.

Most visible = 1

Least visible = 4

Tolerabillty

How tolerant will the user be of this failure? For example, a glitch shows you
overdrew your checking account; you didn't really, it just looks that way. How
tolerant would the user be of that?

Mitigating factors: Will the user community forgive the mistake?

Most
intolerable = 1

Least
intolerable =
4

Human Factors

Can/will humans succeed using this interface?

Mitigating factors: Can they get instructions or help from Customer Service?

Fail = 1

Succeed = 4

The only danger I have experienced over the years with risk ranking happens if you consistently use
too few criteria. If you use only two criteria for all ranking, for example, then the risk analysis may not be
granular enough to provide an accurate representation of the risk. The worst fiasco in risk-based
testing I ever saw was a project that used only two criteria to rank the testable items: probability and
impact. These two criteria did not account for human factors, or cost, or intersystem dependencies. It
turned out that these factors were the driving qualities of the feature set. So, the risk analysis did not
provide accurate information.

Combining the Risk Factors to Get a Relative Index

MITs does not require that you apply a rank index to all of your criteria for every item on the inventory,
so you don't have to apply a rank to inappropriate qualities. The MITs ranking process uses the
average of all the criteria that have been assigned a risk index. Figure 9.3 shows a sample ranking
table from the Tester's Paradise inventory (discussed in Chapters 8, 10, 12, and 13).

Figure 9.3: Sample ranking index for Tester's Paradise.

Notice that the different items don't all have risk indexes assigned for every criteria. For example, if the
risk is concentrated in a requirement, as in the structural item, installation is automatic at logon.
Therefore, there may be no need to worry about any of the other criteria. But the risk associated with an
item is normally a combination of factors, as with the New Functions category, where most of the risk
factors have been assigned an index value.

Note When a ranking criteria has been assigned a rank index, I say that it has been "ranked."

In this sample, each ranking criteria that has been ranked is given equal weight with all other ranked
criteria for that item. For example, the item Method of Payment (data) has four ranked criteria assigned
to it; the average rank is simply the average value of (1 + 2 + 1 + 1)/4 = 1.25. It is possible to use a
more complex weighting system that will make some criteria more important than others, but I have
never had the need to implement one. This system is simple and obvious, and the spreadsheet handles
it beautifully. The spreadsheet transfers the calculated average rank to the other worksheets that use it.
If a change is made in the ranking of an item on the ranking worksheet, it is automatically updated
throughout the project spreadsheet.

In some projects, like the real-world shipping project, it is necessary to rank each project for its
importance in the whole process, and then rank the items inside each inventory item. This double layer
of ranking ensures that test resources concentrate on the most important parts of a large project first.
The second internal prioritization ensures that the most important items inside every inventory item are
accounted for. So, in a less important or "risky" project component, you are still assured of testing its
most important parts, even though it will be getting less attention in the overall project. This relative
importance is accomplished through the same process and serves to determine the test coverage for
the item.

Using Risk Ranking in Forensics

After the product ships or goes live or whatever, there is an opportunity to evaluate the risk analysis
based on the actual failures that are reported in the live product or system. Problems reported to
customer service are the best place to do this research. I have had the opportunity several times over
the past years to perform forensic studies of various products and systems. There is much valuable
information that I can use when I develop criteria for the next test effort by examining what was
considered an important or serious problem on the last effort.

Mining the customer support records gives me two types of important information. First, I can use the
actual events to improve my analysis in future efforts and, second, I find the data that I need to put
dollar amounts in the cost categories of my risk analysis. If I can use this real-world cost information
when I rank my tests and evaluate my performance, then I can make a much better case for the test
effort. This last point is well illustrated in this next case study, the 401(k) Web Project.

Case Study: The 401(k) Web Project

I recently reviewed a new Web application for a fiduciary trust company. The company had been
assured by their eXtreme developers that testers are unnecessary in Web projects. Since the risk of
project failure would be measured in millions of dollars in lost business, they thought it a good idea to
risk a few hundred on a second opinion. This turned out to be a good risk for them and a really good
example for this chapter.

The Application

The only information I was given was that this was a long-awaited Web-based application that would
provide 401(k) retirement plans for self-employed small-business people. Up until this new product line,
the benefits of a 401(k) retirement plan had been the exclusive province of large businesses. Not only
had there not been any opportunity for self-employed persons to have a 401(k) program, but there was
also a significant number of now self-employed persons whose 401(k) retirement plans had been frozen
in the 401(k) plan of their last major employer. People with their 401(k) plans in this situation couldn't
contribute to them or borrow from them. These assets were effectively unavailable to their owners until
they rolled them into an IRA, which could accept contributions but from which they could not borrow.
The other option was to close the fund and remove their money, and pay a significant penalty and
income tax on the amount.

This new product would allow self-employed people to set up and administer their own 401(k) plan. It
would also allow them to transfer in their lame duck 401(k) holdings, and contribute to and borrow
against the plan. The response to the plan offering was expected to be huge.

My Testing

No specific requirements were stated, so I adopted the fundamental risk requirements for all fiduciary
dealings: No money can be created or destroyed (or lost or prematurely withdrawn). The main risk, if
any of these conditions should occur, could include financial instability, audits by government agencies,
criminal proceedings, and high-stakes litigation. I approached the assignment armed only with my ID,
my newly issued password, my Internet-connected PC, and a blank document open in Word.

My first test was to log on and enroll in the plan. The logon failed to complete because of a security
breaching procedure in the application code. This objectionable procedure was rejected by the security
settings in the browser, creating an endless logon loop where the logon succeeded but no other page
could be displayed. This caused the system to redisplay the logon page. However, no error message
was displayed, and normal users would have been completely stymied. And there were more errors.

Within a few hours, I had identified three fatal errors in the application and two fatal errors in the
process. In four hours of testing, I logged 20 issues. Of these, 15 required a call to customer service to
resolve, and 5 were of a nature that would cause the customer to lose confidence in the institution. I
found all of these issues by simply trying to enroll in the program.

Reporting My Results

It was a simple matter to keep track of the number of minutes spent on the phone with CS and the
developers-215 minutes-and, of course, my time spent testing, talking, and reporting. The total came to
8 billable hours. I created an inventory of the features that I tested, the logic flow map of enrollment,
and a bug report complete with pictures. The logic flow map clearly showed two of the fatal errors.
These could have been detected in a design review.

Most of the issues were first reported over the phone, but I prepared a report enumerating all of them,
which was widely circulated among the developers and the agents.

Reproducibility and Savings Estimates

The thing that makes this effort so important for demonstrating risk and its associated costs is that
all of my issues were 100 percent reproducible. They were going to occur during every enrollment.

So every customer was going to experience them. Consequently, calculating the value of testing or
the risk of not testing in terms of dollars saved was doable, and the results were impressive and
defensible.

Developers have long disputed this kind of cost savings statement on the basis that you can't be
sure how many users will be affected. If you have to wait until you have collected actual usage
stats from production before you can justify an estimate, the gun is a long time cold and it is hard to
get a hearing.

Calculating the Value of Testing

The first step was to calculate the cost of their test effort. There were no expenses, so the invoice was
for time only:

The cost of my testing: 8 hours × $125 per hour = $1,000

The next step was to calculate how much cost was incurred by the company for supporting the
customer, me, through this process. I asked what their support costs were for call-in customers on a
per-minute basis; the average estimated cost was $5 per minute. That figure includes all the costs
associated with handling a call-floor space, telecommunications, salaries, benefits, and so on. This
gives a typical cost per (computer-literate, Web-savvy) customer of:

215 minutes per customer × $5 per minute = $1,075 per customer

So, they would probably make back their investment on testing the first time a customer did not have to
call customer service to get through the process of setting up their plan. This estimate doesn't take into
account all the potential customers who would not become customers because of the number of issues
they would have to resolve in order to set up their plan. Nor does it take into account the ones who
would simply fail, give up, and go away without calling customer service.

Next, I asked how many customers they expected to sign up in the first month. (I ignored the cost to fix
the bugs and assumed for the sake of estimation that all the bugs I found would be fixed within the first
month.) The company had planned a mass mailing to 40,000 targeted prospective customers. They
expected a record response to the long-awaited new plan, so estimates went as high as 20 percent
response to the mailing, or 8,000 customers for the plan. (A 5 to 10 percent response would be the
normal estimate.) So, I calculated a range from a 5 percent response, or 2,000 customers at the low
end, to a 20 percent response, or 8,000 customers at the high end.

For simplicity, I will round off the estimated customer support cost per customer to get through the plan
setup stage (calculated in the preceding text) to $1,000 per customer. The savings in customer support
alone, due to testing this one feature, is somewhere between

$1,000 × 2,000 customers = $2,000,000

and

$1,000 × 8,000 customers = $8,000,000

Note Conversely and conservatively, the risk of not testing is somewhere between $2 million and
$8 million in the first month.

If no testing is done, this range represents the budget that they had better have ready for customer
support if they want the product to succeed.

Without a test effort to warn them of these problems in advance, the company would have discovered
these issues in public and in volume. Yet they had not thought it necessary to spend even 1 percent of
this potential loss on a test effort. This is typical of the I-feel-lucky approach to software development
that I talked about in Chapter 3. It is also proof that this approach to software development is still very
much in use.

Managers at the company didn't believe that a test effort would be worthwhile. They didn't believe
because testers don't normally measure these things, and so the value of testing remains a mystery at

best. Testers must learn how to demonstrate the value of their efforts, and they must pursue every
opportunity to demonstrate this value.

Some Thoughts on This Project

This was a small application. I walked into it cold and broke it, many times. Or rather, I discovered
many places where it was broken or disconnected, and I reported them to the maker. There was no
planning and no estimation done. I just started exploring. The effort certainly saved the company
millions of dollars. But there are some problems in this example.

The first problem is that in a larger project this would not be possible. While I could manage the
complexity of this one function in my head and in my notes, in a larger project, there are too many
complexities to succeed using this method. Like my friend in the maze in Chapter 11, "Path Analysis," I
need a string to help me find my way. The next point is that this was an ad hoc effort; a one-time deal
(also covered in Chapter 11). Again, ad hoc efforts don't work on a large scale, which brings me to the
next problem.

The biggest thing wrong with this whole scenario is that it gave management the wrong message, even
though it was unintentional. I cannot believe the naïveté and myopia that encumbers the managers who
somehow reasoned that by testing one-tenth of the application, I had discovered most or all of the bugs
and they were now safe to proceed with the deployment.

Summary

I use my risk analysis for many different purposes before, during, and after the test effort. A ranked
inventory is a powerful tool for answering important questions about the test effort and the product. If
you take one additional step and add a sequencing field like "Test Order," you have created a project
management tool that is uniquely applicable to the test effort.

In the scheme of things, risk analysis costs very little to perform and provides a powerful project
management tool for the test effort. It also ensures that everyone in the effort understands the project's
scope and priorities.

Risk analysis is not a science; at this stage it is mostly an art. However, by using MITs risk analysis,
you can select ranking criteria that are appropriate and pertinent to your project and use them to make
your inventory a very powerful tool in your test effort. There are other benefits as well.

We discussed several benefits of conducting risk analysis in this chapter. It can be an invaluable tool
for improving the test effort, but performing risk analysis has many benefits besides better testing.
Other groups benefit as well from this process, particularly operations.

Risk analysis is valuable in both the plan-driven and RAD/Agile efforts. Understanding risk and being
ready to deal with the outcome is independent of the development methodology. It's just good
management. The case study showed how I use risk analysis and forensic data to demonstrate the
value provided by testing in terms of the money saved by testing.

In this chapter, I described a formal approach to establishing risk and prioritizing the items on the test
inventory, MITs risk analysis, which uses both quantitative and qualitative analysis to establish a
numeric value for risk, based on a number of specific criteria. In the early planning phases of a test
effort, this analysis is used to focus test resources on the most important parts of the project and to size
the test effort.

Once the risk analysis has been completed and tests have been identified, MITs risk analysis is used
as the basis for determining the test coverage that should be given to an item, as you will see in
Chapter 10, "Applied Risk Analysis."

Chapter 10: Applied Risk Analysis

Overview

The first time I told my management that I would not be testing 100 percent of the project, they were
shocked and outraged. There ensued a lively discussion. I found myself with a lot of explaining to do.
But once I had showed them my inventory with its hundreds of test scenarios, they were ready to hear
about my process for ranking the requirements and tests so that I would only run the most important
tests, even if that represented only 67 percent of the inventory, rather than 100 percent.

The managers were much more amenable to the 67 percent test coverage once I had walked them
through my test sizing worksheet and they became acquainted with how long it would take the test
team to actually perform those tests. Finally, my management was particularly pleased when, many
months later, I was able to report to them that these most important tests had found and caused to be
removed 90 percent of all the bugs ever found in the software, before it went to production.

I used my inventory ranking worksheet and my test sizing worksheet to explain the facts of testing to
my management all those years ago. It still works today. The biggest difference is that back when I
started, my worksheets were written and calculated by hand on a quadrille pad. Today they are
automated in an Excel spreadsheet. Back then I spent a lot of effort and time to produce these
worksheets; today they take only a small amount of effort, and they give me answers so fast that I can
keep up and even get ahead of most RAD/Agile developers. In fact, in many Web projects, my
worksheets end up being the only piece of development collateral extant.

The ranking worksheet shows the relative importance and the recommended test coverage for the
inventory item. The sizing worksheet takes those quantities and combines them with project level
constants to grind out an estimate of the time and resources that will be required to perform the
recommended test coverage of the most important tests. Or, from another viewpoint, the worksheet
tells you how much remains to be done.

These worksheets are very popular with the bean counters. The ranking worksheet and the sizing
worksheet have often proved to be the only record of how big the project is, how extensive the test
effort should be, and why. The bean counters understand the worksheet; it turns data into information.
This information answers many of their favorite questions, like the ones discussed in Chapter 1, "The
State of Software Testing Today." These include the following:

What does the software do? The inventory contains the requirements, if they exist; the feature
list; the environment catalog; and so on.

What are you going to do to prove that it works? A tester reads this as, "What are you going to
test?" and "How are you going to test it?" The risk analysis and MITs ranking identifies exactly what
needs to be done to prove that i t works and how I plan to test it. It also answers the question, "How
big is i t?"

What will it cost? The worksheet allows me to answer this question, both by estimation during
planning and in actuality during the test effort as the estimates are replaced with actual measured
quantities.

Usually the auditors don't want to know how I got the inventory; they just pick it up and run with it.
Oddly, in all my years of testing, the developers in the real-world shipping project, discussed in Chapter
7, are the only ones who have ever seriously challenged my risk analysis.

Again, every project is different, and each sizing worksheet is likely to be different as well. I have
developed a new flavor of sizing worksheet in almost every project I have ever done. But I almost
always start with the same Excel spreadsheet template. The point is, I could not give management the
quality answers that I do without an inventory and a sizing worksheet.

Note The worksheet is the place where all those numbers, those measurements I have been
recording, become valuable information. This information can be used to make decisions.

This chapter talks about how to use risk analysis on the inventory to produce answers to the questions

in the preceding list. You will find ways to build a preliminary sizing worksheet and use it in test
estimation. Then you will learn how to continue to use the inventory and sizing worksheet as you refine
your estimates and add the most important tests to the inventory.

As in previous chapters, these techniques are discussed in terms of how they apply to various
development approaches.

Applying Risk Analysis to the Inventory

During the planning phase, we want to be able to produce quick estimates of the number and type of tests that we
will need to perform. I use a method that yields a quick estimate of the MITs for this process. I will then use this
estimated MITs total in the sizing worksheet to estimate the optimum time frame, and resources required, for the
test effort.

Part of the payback for a good risk analysis is that you pick the best tests, perform fewer tests, and get a higher
return (higher bug find rate) on them. When I begin constructing test cases, I examine the paths and data sets in
greater detail. I will use the more rigorous approach to calculate the MITs total.

In my spreadsheet-based inventory, a sizing worksheet begins with inventory items already discussed in chapters 8
and 9. In this next step, we will add the inventory risk analysis and the test coverage estimates that it yields. Once
you enter an inventory item or a test item into one of the spreadsheet inventories, its name, average rank, and the
number of tests associated with it are carried automatically to all the worksheets. So, for example, if you change the
rank of an item or the number of tests associated with the item, the number of MITs, or the recommended test
coverage, all the estimates for resource requirements are automatically updated for you. You can download this
sample spreadsheet, which I developed for the Testers Paradise Application Version 2.0, to help you get started, at
www.testersparadise.com.

The Test Estimation Process

Consider the information in Table 10.1. This is the first page of the spreadsheet.[1] It is the ranking worksheet that
contains the project information, the preliminary high-level inventory, a number of tests for each item, and the rank of
each item. In this worksheet, the ranking criteria are S for severity, P for probability, C for cost, C/CS for cost for
customer service, and R for required.

Table 10.1: Sample Preliminary Inventory with Ranking

Tester's Paradise
(Release 2.0)

Inventory Items T#Tests
Identified

S P C C/CS R AVGR

Bug Fix Information Fix For Error #123 (see
req. B477)

7 1 1
1.00

 Fix for Error #124 (see
req. B501)

4 3 4 3

3.33

New Function New Menu Option View
Mini Clip

4 1.6
1.60

(see req. D071 & D072) Arrange Payment
(Path)

5 1 2 1 1

1.25

 Method of Payment
(Path)

11 1 2 2 1 2
1.60

 Method of Payment
(data)

12 1 2 1 1

1.25

 Purchase Option: Not
Available in some
states (data)

50 1

1.00

 Minimum Order must
be $30.00 (data)

3 1 1
1.00

 Method of Payment
limited to 2 credit cards
(Data)

12 1 1 1 2 1

1.20

Structural/Environment
Information

Enhancement -
automatic detection for
5 modems. (Rel. 1 had
auto-detect for 3
classes only)

5 1

1.00

 Installation is automatic
at logon

1 1
1.00

 Total New Tests with
average rank:

114

1.38

Existing Application
Base Function

Our Best Simulator
(automated suite
BSIM01)

65 1.00

1.00

Standard base function
tests still apply:

Message Data Flow
Checker (automated
suite DFCHECK)

61 1.00

1.00

All test suites for Version
1.0 will be run

Screen Comparison -
Pixel Viewer
(automated suite
PIXVIEW)

76 1.00

1.00

MITSs Totals - All
Tests

Tot tests & average
rank=

316 1.31

Which Comes First? The Analysis or the Plan?

For many years I covered the analytical test analysis topics, path analysis and data anaylsis, before I discussed
risk analysis. But in that time, I have found that in practice more testers can put risk analysis into practice and
get real value from it more quickly and easily than test analysis. As a result, I put the risk analysis topics before
the test analysis topics in this book. If you have to go back to testing before you finish the book, you can at least
take the risk topics and the worksheet with you.

However, it is not possible to discuss all the great uses for a worksheet without having some tests to count. So
for the purposes of finishing the discussion on risk analysis, I am going to pretend that you have already
identified some tests under each inventory item. The next three chapters present good methods for counting
how many tests actually exist, along with other good tools for you to use in the actual selection process.

In each of the next three chapters, I will continue to add tests to the inventory as I explain path and data
analysis.

This project is a typical middleweight project with some Agile programming on the Web front end and some well-
planned database and business logic modules in the back.

There are many ways of determining the risk index associated with each ranking criteria, as we discussed in the
previous chapter. The worksheet calculates the average rank of each inventory item. This becomes the base rank
used in the estimation process. But before we move on to this next step, we need to examine where the tests
associated with each inventory item came from.

Where Do the Tests Come From?

The worksheet lists a number of tests associated with each inventory item. The notations (Path) and (Data) next to
certain inventory items refer to the type of tests being counted. I will cover both path and data analysis in detail in
the next three chapters, where I will show you some very powerful and fast techniques for estimating and counting
the number of path tests and data tests you will need in your test effort.

Suffice it to say, you can be as general or as specific as you like when you estimate the number of tests for each of
these preliminary inventories. I always estimate certain types of tests; as with everything else in MITs, you are
invited to customize this list to suit yourself. The following are my test sources:

Most Important Nonanalytical Tests (MINs). These are the tests that come from the Subject Matter Experts.
They tend to dig deep into the system and focus on hot spots. They are often ad hoc in nature and do not
provide any type of consistent coverage.

Most Important Paths (MIPs). These are the logic flow paths through a system. They form the basis for user-
based function testing and allow the tester to verify and validate functions end to end. Chapters 11 and 12 deal
with path analysis.

Most Important Data (MIDs). These are the data sets that must be validated and verified. Chapter 13 deals
with techniques for counting and choosing your test data.

Most Important Environments (MIEs). There are two types of environmental testing. The first type is illustrated
in the real-world shipping example from Chapter 7, where it was important to identify the various parts of the
system that were used by the inventory test items (see Figure 7.2 and Figure 8.9 for examples of this type of
environment). In this case, we use the test inventory to track what tests use what environments. This type of
environment test is incorporated into various test scripts as a matter of course. The second type of environment
testing is unique because it involves multiple environments that the software must run on. This is the more
common scenario in RAD/Agile development efforts, where the application will be expected to run on several
types of platforms, hardware, operating systems, databases, and so on.

This type of test is unique in this list, because while the other three types of tests tend to turn into test scripts,
testing these environments requires that you run all your scripts on each environment. This is shown in the
following equation:

MITs = (MINs + MIPs + MIDs) × (MIEs)

For this reason, this type of testing has an enormous impact on the time it will take to complete testing, and that
is why the test environments get their own pages in my spreadsheets.

Clearly, the more accurate the number of tests identified at an early stage, the better the quality of the resulting
estimate of the resources required to conduct the test effort. Once this worksheet has been filled out, the next step
is to update the MITs Totals worksheet with these values.

The MITs Totals Worksheet

Up until now I have talked about risk in general terms, as it relates to a requirement or a feature-the high-level view.
If I am analyzing the requirements and feature list, I will identify smaller and smaller testable bits through analysis.
Those testable items are ranked and recorded in the inventory. Eventually, I will add up the most important tests in
each category and put the totals in the sizing worksheet so that I can count how much time they will take to
accomplish.

In my spreadsheet, the base values are automatically transferred from the Ranking worksheet to the MITs Totals
worksheet, where the estimated test coverage and MITs tests are calculated as shown in Table 10.2. In this table,
you see a preliminary estimate of the test coverage and the number of MITs that need to be run.

Table 10.2: Data from the MITs Totals Worksheet

Tester's Paradise
(Release 2.0)

Inventory
Items

T #Tests
Identified

Rank %Cov
(100/
Rank)%

PastPerf
Past
Performance

TI Tests
Identified/Rank
= Number of
tests to run

Bug Fix Information Fix For Error
#123 (see req.
B477)

7 1.00 100% 75% 7.00

 Fix for Error
#124 (see req.
B501)

4 3.33 30% 95% 1.20

New Function New Menu
Option #3
View Mini Clip

4 1.60 63% 2.50

(see req. D071 &
D072)

Arrange
Payment
(Path)

5 1.25 80% NA 4.00

0 Method of
Payment
(Path)

11 1.60 63% NA 6.88

0 Method of
Payment
(Data)

12 1.25 80% NA 9.60

0 Purchase
Option: Not
Available in
some states
(Data)

50 1.00 100% NA 50.00

0 Minimum
Order must be
$30.00 (Data)

3 1.00 100% NA 3.00

0 Method of
Payment
limited to 2
credit cards
(Data)

12 1.20 83% NA 10.00

Structural/Environment
Information

Enhancement
-automatic
detection for 5
modems. (Rel.
1 had auto-
detect for 3
classes only)

5 1.00 100% NA 5.00

0 Installation is
automatic at
logon

1 1.00 100% NA 1.00

0 Total New
Tests,
Average Rank,
Average Test
Coverage,
MITs by
Summation

113 1.38 72% MITS SUM 100.18

 TotalTests/avg
of rank values
and MITs by
Summation

82.00 ---> 101.00

Existing Application
Base Function

Our Best
Simulator
(automated
suite BSIM01)

65 67% 97% 43.55

Standard base
function tests still
apply:

Message Data
Flow Checker
(automated
suite
DFCHECK)

61 47% 90% 28.67

All test suites for
Version 1.0 will be run

Screen
Comparison -
Pixel Viewer
(automated
suite
PIXVIEW)

76 77% 94% 58.52

 Tot New + Old
tests =

315 avg.% 64% 231.74

MITs Totals - All
Tests

Min MITs = T
× %Cov =

201.00 MITs = 232.00

Minimum % test
coverage

min MITS / T ×
100 =

201.00 64%

Proposed % test
coverage

(TI / T) × 100
=

 74% 232.00

The first section of Table 10.2 deals with the new test items in Release 2. The middle section lists the tests from the
previous release, and the last section contains the MITs totals. We will talk about this last section first.

The first thing to notice about the last section of Table 10.2, the last four lines, is that a total of 315 tests have been
identified. But there are two different totals for the MITs. These are listed in the third from the last line.

MITs by the Rank Average Method

The first MITs value, 201 tests, coverage of 64 percent, is the average value of the total of all the tests divided by
the average rank of all the tests:

Minimum MITs = (MINs + MIPs + MIDs)/Average Rank

This is the absolute minimum number of tests that we could run. It is not the recommended value, and it may be
completely hypothetical; however, it does give management a low-end value to use in the resource negotiations.

MITs by the Summation Method

The second MITs value, 232 tests, with a test coverage of 74 percent, is the recommended value for the MITs in this
test effort. This value is the sum of the MITs for each item divided by its rank index. This is MITs by the summation
method. The formal equation is shown in the following equation:

where:

T = All tests for the item

R = Rank of the item

tsi = Total selected items

The summation method always gives a more accurate picture of how many tests will be needed, since it is more
granular by nature. In my sizing worksheet, it provides the high end for resource negotiations.

If I am preparing a simple high-level (pie-in-the-sky) estimate, it will use requirements and features as the ranked
test items. The work estimates will be very approximate. If I can include the count of actual tests identified for the
project and use the MITs by summation method, then I can create a much more accurate estimate of resource
requirements.

This means I have a better chance of negotiating for enough resources to actually succeed in my test effort. This is
why I perform path and data analysis on the test items before I present my sizing estimates. Don't worry, though. If
the development methodology in your shop does not give you time to plan and analyze, the worksheets are still
powerful measurement and reporting tools.

Risk-Based Test Coverage and Performance

In the MITs method, the proposed test coverage, shown in column 5 of Table 10.2, is based on the number of tests
identified for the item and the average rank index of the item. The past performance metric shown in column 6 is a
measure of how good the MITs test coverage was. It is unfortunate that you have to wait until the product has been
in production for some time before you can get the performance measure, but it does help you improve your work in
the future.

The middle section, Existing Application Base Function, comprises the tests that were developed for the previous
release. Notice that these tests found from 90 to 97 percent of the bugs before this previous release went into
production. Especially noteworthy was the test suite for the Data Flow Checker. It only provided 47 percent test
coverage, yet this suite found 90 percent of bugs in the release. Not much had been changed in these existing
functions, so there seems to be no reason to make any changes in these test suites.

Rerunning test suites from previous releases is normally used to make sure that nothing got broken in the process
of putting the new code in place. Unfortunately, they are the first thing management likes to cull out when time
pressure builds.

A good test sweep for Release 1 can then be a starting point for subsequent releases. Microsoft likes to call this a
"smoke test"; I like to call it a diagnostic suite. The point is that a test suite of this type can outlive the code it was
originally written to test. So don't lose track of where you put these older tests if you are forced to forego them in one
test cycle. You may well want them back at some point.

One final note before we move on to examining the sizing worksheet: Keep in mind that the rank of tests can change
from one release to the next, as well as during a release. For example, maybe a low-ranking block of tests finds an
astounding number of bugs. We'd want to up the ranking for it the next time we run it. Eventually, when the system
stabilizes, you might want to go back to original ranking on that block of tests. This also assumes that assumptions
for Release 1 are also valid for Release 2, which is not always the case.

The Sizing Worksheet

The sizing worksheet, as I use it here, is first and foremost the tool I use to calculate how much the test effort will
do, based on the risk analysis, and how much that will cost in terms of testers, test time, regression test time, and
test environments.

The sizing worksheet will contain relative percentages, like test coverage. It will contain time taken, and if you are
lucky and very clever, it will contain the cost of doing and not doing certain tests. It will contain assumptions; these
should be clearly noted as such. It will also contain estimates, which should be clearly distinguished from actuals.

Some Thoughts about Test Coverage

How much of what there was to test did you test? Was that "adequate"? I saw a reference to an IEEE guideline
that said that minimum test coverage should be 80 percent. I want to know: "80 percent of what?" If there is no
immutable method for counting all the tests that exist, what benefit are we gaining by testing some fixed
percentage? How do we know that the 80 percent that was tested was the right 80 percent? It is ironic that
Pareto analysis suggests that 20 percent of the code generally causes 80 percent of the problems. How does
this method ensure that we will test any part of the most-likely-to-fail 20 percent?

Unfortunately, there is no magic number for test coverage. The adequate test effort is made so by selecting the
correct tests, not by running a particular number of them. Further, you can only find the magic 20 percent
problem center with good risk analysis techniques.

During the test effort, estimates are replaced by the actual effort times. The worksheet becomes the tracking vehicle
for project deliverables. As we test, we replace the estimates with real time, so when we estimate the next test effort,
we have actual times to compare the estimates with. This improves our estimates.

Once my ranking is complete, the totals on the MITs Totals worksheet populate the sizing worksheet. Table 10.3
shows my sample test sizing worksheet. Most of the numbers in the third column are either linked values from the
MITs Totals worksheet or they are calculated in their cells here on the sizing worksheet. I will point out some of the
highlights of this sample.

Table 10.3: Tester's Paradise Test Sizing Worksheet

Item Tester's Paradise (Release 2.0)

1 Total Tests for 100% coverage (T) from MITs Totals row on Test Calc. Sheet 315

 MITs Recommended number of scripts 232.00

 MITs Minimum number of scripts from MITs Totals Sheet 208.00

 MITs estimate for recommended coverage - all code 74%

 MITs estimate for minimum required coverage - all code 66%

 Number of existing tests from Version 1 130.74

 Total New Tests identified 113

 Number of tests to be created 101.00

2. Average number of keystrokes in a test script 50

 Est. script create time (manual script entry) 20 min. each- > (total new tests x 20/60) =
person-hours total

32.58

3. Est. Automated replay time total MITs (including validation) 4/60 hours/script = replay
hr./cycle total (For each test environment)

15.47

 Est. manual replay time for MITs tests (including validation) x 20/60) = hours/cycle
(For each test environment)

77.33

4. LOC Approx. 10,000 C++ language, 2,000 ASP 12,000
lines

 Est. Number of errors (3 error/100 LOC) = 400 400
errors

5. Number of code turnovers expected 4

 Number of complete test cycles est. 5

6. Number of test environments 6

 Total Number of tests that will be run (against each environment) 4 complete
automated cycles = Total MITs × 4

928

 Total Tests - all environments in 5 cycles × Total MITs × 6 environments 6960

7. Pre-Turnover: Analysis planning and design 80 hr

 Post-Turnover:

8. Script creation & 1st test cycle (manual build + rerun old suites) = Hours 41.30

 4 Automated Test cycles (time per cycle x 4) x Running concurrently on 6
environments (in Hours)

61.87

 Total: Script run time with automation Running concurrently on 6 environments (1
manual + 4 automated) = weeks to run all tests through 5 cycles on 6 environments

7.22

 Total: Script run time all Manual (5 manual cycles) = weeks serial testing for 6
environments - Best Recommendation for automating testing!

58

9. Error logs, Status etc. (est. 1 day in 5 for each environment) weeks 1.73

 Total: Unadjusted effort Total Run Time + Bug Reporting (in Weeks) 8.95

10. Factor of Safety adjustment = 50% Total adjusted effort (Total effort in Weeks) 13.43

11. Minimum completion time: 7 weeks due to coding constraints Assumptions:

100% availability of the test system.

10 test machines preset with the req. environments.

Multiple testers will be assigned as needed

3 Programmers available for fixes

Standard error density and composition

Current Status: Analysis, test plan and test design completed. Awaiting code
turnover to begin testing.

7 weeks

Item 1: MITs Tests and Coverage

The total number of tests that have been identified in this application is 315. After MITs analysis, the recommended
test coverage is 74 percent. This means that I am going to size the test effort for 232 tests-the high end of the
estimate. From this starting point, the rest of the worksheet is dedicated to calculating how many hours it will take to
run 232 tests, create automated tests, report and track bugs, and so on.

If I have to, I can fall back on the minimum MITs number, but I really don't like to underestimate the test effort at this
time.

Item 2: Test Units and Time to Create Tests

The number of 50 keystrokes was based on average number of keystrokes in a script from the first release of the
application. The estimate of how long it would take to capture a script, 20 minutes, was also based on historical
data.

Caution Check yourself carefully on this estimate. One of the most interesting and amusing boo-boos that I
have ever been asked to find a way out of came from a very mature and professional test organization.
This group had performed a full MITs evaluation, complete with factor of safety, only to find when they
began creating tests that their time to create estimate was underestimated by two-thirds. Happily, we
were able to speed the test creation just a bit, shave the number of MITs by 5 percent, and make up
the difference from the factor of safety.

You will need to specify your own definition for "test" units. In this example, the units are keystrokes. This is because
all of these tests are driven from the user interface. The average number of keystrokes per script was established
based on the test scripts developed in the first release of the application. But you may have data sets, or message
types, or all sorts of other units. Just add as many rows as you need and keep adding up the totals.

You can add more rows and columns to your own worksheet as you need. For example, these tests are all driven
from the user interface and entered via keystrokes. If you have tests that run from batched data files, you will add a
row that contains your estimate of the time required to perform the batch testing.

Item 3: Time to Run Tests and Create Automated Tests

Again, this estimate needs to be as accurate as possible. Keying in scripts is hard and thankless. I use a team-
oriented approach to ensure that everyone keeps moving and that morale stays high. I believe in providing free
soda, pizza, and whatever else it takes to make my people feel good about doing this boring, repetitive work. A
tester who is awake creates better scripts than one who is bored to death.

Notice that the estimated replay time for the automated tests was 15.47 hours, or just under two days per cycle. This
was the time it would take the entire test suite of 232 tests to run to completion on one machine. The same tests
would take 77.33 hours to run manually.

Item 4: Estimate the Number of Errors That Will Be Found

This project had about 12,000 lines of code and script. The company maintained bugs per KLOC (thousands of lines

of code) statistics; three errors per KLOC was the magic number, so we used it. It's very hard to estimate how many
errors you will actually find, but if you can estimate based on historical data, you at least have a target. We never
took it too seriously, but sometimes it was helpful.

Do be careful, though. I was on a project once where the development manager wanted us to stop testing the
product after we had found the "estimated" number of bugs. We were not finished testing; we were still finding bugs
at the rate of several each day. Nonetheless, I had my hands full convincing her that we were not finished testing.

Item 5: Code Turnovers, Test Cycles

Four code turnovers were expected during the test effort. So the team was expecting to process one or two major
deliveries and two or three bug fix deliveries. Because the effort was automated, the testers were expected to run
the entire automated test suite every time code was turned over. This meant running every automated script as
many as five times.

This was a completely different approach from running a manual test effort. In a manual effort, you can hardly hope
to run most tests more than once. In this effort, we found that testers had time on their hands once they started
running the automated tests, so instead of just going back and rerunning tests, they were actually refining the
existing tests and creating better, higher-quality tests. They would take two or three old tests, pull them out, and
replace them with one high-quality test. Over the course of the test effort, the number of tests actually dropped
because of this refinement.

Building the new scripts was counted as part of the first test cycle, killing two birds with one stone. The new
automated test scripts were built and tested at the same time. This counted as the first test cycle. The plan was to
run the following four test cycles in a fully automated mode.

Item 6: Test Environments and Total Tests

Every test needed to be verified and validated in all six environments, so the test room was set up with all six
machines. This meant that in two days of automated test runs, 928 test scripts were run on each of the six
machines. This was when we found that the administrative overhead was higher than our estimate of having to
spend one day out of five doing administrative and bug reporting tasks. (See Item 9.)

This meant that 6,960 tests would be run over the course of the test effort, in five cycles against six test
environments. Because the effort was automated, this was doable. It would not have been possible to test to this
standard if the tests were being run in a manual mode. The bug reporting effort was larger than expected, however.

Item 7: Planning Time

I don't usually spend more than two weeks planning my test efforts, but I may spend the entire test cycle designing
and refining tests. It just depends on how the code arrives, how many test environments I have, and any other
relevant particulars for the effort. Also, I like to have this planning time finished before I present the sizing worksheet
to management. It simply goes down better. Of course, this in not possible in a really large project, but it usually is
possible in a Web application project.

If "plan" is one of those four-letter words that is not politically acceptable in your shop, then you can always absorb
your planning time in the estimate of the time required to run your tests, or by adding an extra test cycle.

Item 8: The Case for Test Automation

One of the most noteworthy things about Table 10.3 is the comparison between the total number of hours it would
take to run a mostly automated test effort, 15.47, compared to the number of hours it would take to run a manual
test effort, 77.33. You can see that there is a good case here for automating the test scripts from this new release. It
is this kind of analysis that allows you to make good recommendations about what to automate and when to do it.

In a manual effort it would have taken 58 weeks to run all five test cycles. The automated tests could be run in under
eight weeks by fewer testers.

Item 9: Administration, Documentation, and Logging Time

In our shop we usually spent about one day in five bug-logging. This seems to be pretty normal. However, it turned
out to be low in this effort, for the reasons that I stated previously, in Item 6. We needed our factor of safety to help
us survive this low estimate during the effort.

Test results have to be analyzed, bugs have to be reported, questions have to be answered about what happened,
tests have to be reconstructed to understand just went wrong, and failures need to be reproduced for developers.
These are a few of the administrative tasks that kept the testers busy in between test runs. In this effort, managing
the multiple test environments required more time than we anticipated.

Item 10: Factor of Safety

Notice that there is a 50 percent safety factor built into the overall time required to conduct this effort. Now if your
management says, "What's this factor of safety?", you can say it's to cover the unforeseen and unplanned activities
that happen every day, like meetings, kids getting sick, telephone and computer systems going down-this is just real
life. As I said before, 50 percent is very low; this is where everyone is focused on this test effort. We used it up
making up for our low bug reporting and administration estimate.

Item 11: Constraints, Assumptions, and Status

This next box looks pretty innocuous, but it is where everything hits the wall. The minimum completion time is seven
weeks, due to coding constraints. This is the quickest we could get it done. We expect to find 400 errors here. It
takes time to fix errors. This is the part management loses sight of most often: the time it takes to fix the bugs. See
the section coming up, Don't Forget the Developers to Fix the Bugs, for a real-life example of this.

The main assumption in this effort was 100 percent availability of the test system. I am happy to say this wasn't a
problem in this particular project, but it normally is a major dependency.

The head tester, Joseph, a quiet, gentle person who couldn't kill a spider, had completed his analysis, test plan, and
test design when this proposal was presented to our senior vice president. His test environments were ready,
baselined, and fully mirrored. This tester was waiting for his code.

Negotiating the Test Effort

After many years testing, this is still my favorite example of how a good tester can succeed. Joseph had successfully
negotiated for 12 weeks to complete the automated test effort in the tables. When the first cycle was automated, his
actuals looked so good that he rescaled his sizing worksheet and it looked like everything would still fit into the 12
weeks. Then someone in marketing promised a vice president somewhere that they would deliver the application in
four weeks.

I was asked to join the test team that went to tell our vice president what he had to do to get this delivered in four
weeks. As always, I was ready to play the sacrificial tester in case things went bad.

"So how can we get this done in four weeks?" the vice president asked the tester, Joseph. "You only have three
testers; we can give you 10 good folks from customer service and editorial to help you test. That will do the trick,
won't it?"

Joseph wasn't ruffled. "We planned on having six machines running. It takes one machine 16 hours to run the entire
suite. If we doubled the number of machines, we could cut that in half." This made sense to the vice president.

Joseph continued, "I wouldn't mind having one other trained tester, but I would decline your kind offer of these guys
from editorial because they don't stick to plan and we can't reproduce what they break. We end up spending all our
time with them, instead of getting our testing done.

"What we really need is lots of developers to fix the bugs we find right away. If we can run a test cycle in a day, we
need the bugs fixed as fast as we can find them. The programmers we have can't possibly give us fixes for 400
bugs in four weeks."

The VP was surprised, but he agreed. The product was delivered in four weeks, and it was very stable. The lesson
here is, don't forget the time required to fix the bugs found by testing. This is a common problem in test efforts-
mostly because testers don't control this issue.

Don't Forget the Developers to Fix the Bugs

I have encountered this problem several times in my career, enough times to spend a few words on it here. The
following example is the best example I ever saw of this situation, because it happened to a very mature and
contentious development shop. It just goes to show that we can all get sucked into this mistake.

This was a heavyweight project for a major telecommunications company that came dangerously close to failure
because management did not keep sufficient developers ready to fix the bugs that the testers found.

The testers had prepared a full complement of test collateral, including a very good estimate of how many bugs the
effort would find, what severity they would be, and so on, but they didn't take the next step and build an estimate of
how much time and how many developers it would take to fix all these bugs. So when the project was marked
complete by the development managers, they moved all but one of the developers to new projects in different
countries.

When I joined the project, I built a worksheet straight away. The lone developer was kind enough to contribute
estimates of how much time it would take to fix each logged bug with a severity of 2 or higher. The testers had a
good inventory; I simply added a sheet to it. The new sheet was basically the test script worksheet with an
environment matrix. Each bug was recorded under the test script that uncovered it. I added two columns to the
sheet; one was for the severity of the bug, and the other was the time-to-fix estimate. This worksheet showed
management not only how many developer hours would be required to fix these serious to critical bugs, but which
requirement, features, and environments the developers should be familiar with. It also showed testers where they
could expect to be regression testing the most.

Initially, management supplied developers who were not assigned to any project at that time to fix the bugs. These
developers spent precious weeks not fixing bugs, but, rather, trying to understand the system. Management was
finally persuaded to bring back key developers specifically to address issues in the code they had written. The
developers who had written the code were able to fix the bugs, and the deadlines for system delivery were met, but
meanwhile, their new projects fell behind.

It seems absurd that something so important as fixing the bugs found by testing could fall through the cracks. I
attribute this problem mostly to a failure of project management techniques in general. When I have seen this
failure, it has always been traceable to the fact that there was no task on the project plan for fixing bugs after the
code was delivered. This is especially true and problematic in large integration projects where integration issues are
not discovered until well after the code has been turned over.

In these cases, the developers who wrote the code have invariably been assigned to their next project, leaving no
one who is familiar with the code to fix the bugs. In such circumstances, the time and the cost needed to fix the bug
are both significantly higher than when a bug is fixed by the original author.

On a slightly different note, I have to say that not everyone has this problem. There is a new development
methodology called eXtreme programming that has gone in quite the opposite direction. Rather than forget that time
and developers are required to fix the bugs that testers find, they are counting on it.

The eXtreme Project

Software makers are still trying to off-load the cost of validation and verification onto the user. The latest example of
this is eXtreme programming. After close inspection, I have decided it is simply the latest iteration of the I-feel-lucky
approach to software development. eXtreme uses a frontal assault on the concept of testing. The RAD approach
was to pretend to do formal testing, while what is really going on is a bit of cursory exploration by the testers before
letting the customers test it. eXtreme asserts that they are so good that no testing is necessary. This means that no
time or effort is wasted before turning it over to the customer, who will begin testing in earnest, whether they mean
to or not. What the method does do extremely well is pander to the classic A-type compulsive personalities, giving
them full permission to run amuck while keeping the financial auditors at bay until it is too late to turn back.

If eXtreme succeeds at all in fielding a viable product, it is due to the Money for Flexibility (MFF) strategy that goes
along with this approach and the full dress rehearsal that they are giving the software while the first sacrificial
customers test it. The successful eXtreme projects that I have seen keep a full contingent of developers at the ready
when they roll out the software to a select few customers. This gives them the lead-time that they need to fix all the
major issues before too many people see the thing.

The Contract to Test

The sizing worksheet is an important tool in establishing the contract to test. When I write a contract, the first thing I
do is estimate the test effort. Then I write the test scripts for some of the buggier areas and compare the two. I can
then go in to sign the contract feeling better about my estimate. A test sizing worksheet is used to prepare estimates
of the resources required to carry out the test effort.

The worksheet is an important communications tool both in the estimation and in the negotiation phase. It shows
management why I couldn't do what they wanted. It protects the customer. If management doesn't understand how
big the thing is, they don't understand why you can't test it in 24 hours. In the resource negotiations process, the
worksheet, along with the rank and test calculations sheets, serves as the basis for the contract to test between
parties.

Once the negotiations are concluded and the contract to test is formalized, this part of the process is completed.
The next step is to actually identify tests under each inventory item. Now let's imagine that you are going to actually
start designing, collecting, and discovering tests.
[1]I simply selected the cells I wanted in the spreadsheet and copied them, then pasted them here in my Word
document.

Risk Criteria for Picking Tests

As with requirements and functions (discussed in the previous chapter), where criteria must be applied
when ranking them, you also need to apply additional criteria when selecting the most important tests.
In general, each of the criteria that I use is related to a type of analysis or some other process that
defines tests. In this next section, I talk about the tests, the analysis methods I use to identify them, and
the criteria I use to rank them. Ultimately, it is the rank of the tests that determines exactly what will be
tested and what will not.

There are an infinite number of things that could be tested even for a small, shrink-wrapped application.
There can be a hundred permutations on simply resizing a window. It is not generally cost-effective to
try and test everything that can be tested. I want to pick the most important tests, and I do that by
applying criteria to each test to measure its relative importance. I want to select the tests that fulfill the
following requirements.

Validating and Verifying the System Requirements

In traditional commercial software development endeavors (heavyweight to middleweight projects), the
requirements are the basis of communication throughout the entire project. They must be well planned
and clearly stated. It is a straightforward process to plan tests that verify system requirements when the
requirements are well documented. Testers in a traditional software development effort must verify that
the system meets the requirements. They were normally detached from the validation of requirements.

In a RAD/Agile effort, the requirements are changing faster than anything else, and they are rarely well
documented. This makes it difficult to plan verification tests. Development delivers a function important
to end users, and the RAD test team response is, "Oh, that's great, but can we make it do this, too?"
Communication is direct; the requirements are embodied in the product. Testers in a RAD/Agile effort
are more concerned with answering the validation question, "Does the system do the right things in an
acceptable way?"

Exercising the Most Important Functions in the System

Exercise the least understood and the riskiest internal functions of the system-the tests that exercise
the most important code or logic paths and data, along with all the interfaces, including module,
system, database, network, and business rules. These tests often come together through path analysis
(see Chapters 11 and 12), but they also can come directly from the design and requirements.

Exercising the Most Important Paths and Data

From the perspective of the user, the most used functions and data are the most important paths to be
tested. These path and data tests are in addition to those identified previously as system function
needs. See Chapter 11, "Path Analysis," Chapter 12, "Applied Path Analysis," and Chapter 13, "Data
Analysis Techniques," for details on this type of test.

Giving the Most Bang for the Buck

If a test suite provides 50 percent test coverage and finds 97 percent of the errors ever found in the
system, then the test coverage provided by this test suite is probably adequate. That's the kind of
quality I want to target.

Tests that delve into the areas where the level of confidence is lowest are always a good bet. You are
going to want to look very closely at the newer, riskier things. You will want to get way down in the code
and make sure you test absolutely everything. Unfortunately, for RAD/Agile efforts, we usually only
have time to make sure the function holds together under the best set of circumstances, and then we
have to move on.

The test budget gets more bang from the bucks spent on scripts that pack the largest number of the
best tests into the most optimized sequence. This type of test usually evolves over time and is the
product of several test cycles. Another possible source for this type of test is an expert tester. In either

case, these are usually the tests that will be used again and again. If possible, they should be
automated. These test scripts are commonly used to form high-power diagnostic suites or basis suites.

Note When testers get into the code, there are always more paths to test than originally estimated.

The number of tests associated with each inventory item will continue to grow as you proceed to
analyze them, whether that is before or during testing. The reason that I keep my totals on their own
worksheet is that it allows me to add columns for the actual number of tests that I end up running. This
allows me to carry both the estimated totals and the actual totals through the project. By keeping tabs
on the estimates and the actuals, I can baseline the project, measure bloat, and establish factors of
safety for the next project. Even in a RAD/Agile effort, this is important, because if the actual numbers
deviate too far from the budgeted estimates, I can alert management early-instead of waiting until we
are out of money.

This capability of providing constant status information is very compatible with the MFF approach.
Without this type of information, testers must approach the test effort as if it were a pie-eating contest.
They simply start testing when the product arrives and keep banging away on it until someone ships it. I
hate to say it, but I believe that is a big part of the reason that testing has such a bad reputation today.
The testers never know how big it is so that when the management asks, "What did you test?" they can
say, "We tested it all." From their point of view, they tested everything that they knew about; the
problem is that they never really saw the whole thing. No one talks about the heaps of pies that weren't
dealt with before the "ship it" whistle blew.

Summary

In this chapter, I walked you through the process of implementing an automated test inventory complete
with test totals and a sizing worksheet. I showed you how I use this information to construct a test
sizing worksheet that I use to negotiate the particulars of the test effort.

Using the sizing worksheet, testers and managers are in a position to make well-informed decisions
about trade-offs between test coverage and test resources. It is an enormous aid in budget
negotiations because I can change the rank of test numbers and environment numbers and see the
effect immediately, then show the effect to management.

In the last chapter, we discussed how to establish the risk criteria and ranking index for the items on
your inventory from the high level. In this chapter, I showed you how I use that analysis to focus my test
efforts on the most important areas. I discussed the criteria that I use to pick the right tests to fulfill my
estimated test coverage and provide an adequate effort.

There are many types of tests in the inventory. In the next three chapters, we discuss path and data
analysis techniques that will help you quickly identify the most important tests for your test scripts.

Chapter 11: Path Analysis

Overview

"The path not tested is certain to blow up when the users get the product"

-One of the few certainties of testing

A labyrinth or maze is a perplexing arrangement of pathways designed in such a way that anyone
entering has great difficulty finding the way out. The paths through a software system are a maze that
the software tester must navigate, not just one time, but many times while the software system evolves
and changes. Certainly, this is a daunting task, but software testers are not the first people to grapple
with it. The subject of maze traversal has been on people's minds in one way or another for a very long
time.

The Legend of the Maze of the Minotaur

About 4,000 years ago, the wealthy seafaring Minoans built many wonderful structures on the island of
Crete. These structures included lovely stone-walled palaces, probably the first stone paved road in the
world, and, reputedly, a huge stone labyrinth on a seaside cliff called The Maze of the Minotaur.

The Minotaur of Greek mythology was a monster with the head of a bull and the body of a man, borne
by Pasiphaë, Queen of Crete, and sired by a snow-white bull. According to legend, the god Poseidon
who sent the white bull to Minos, King of Crete, was so angered by Minos' refusal to sacrifice the bull
that Poseidon forced the union of Queen Pasiphaë and the beast. Thus the monster Minotaur was
born. King Minos ordered construction of the great labyrinth as the Minotaur's prison. The beast was
confined in the maze and fed human sacrifices, usually young Greeks, in annual rituals at which young
men and women performed gymnastics on the horns of bulls and some unfortunate persons were
dropped through a hole into the labyrinth's tunnels. The sacrifices continued until a Greek Hero named
Theseus killed the Minotaur.

The Minoans did give their sacrifices a sporting chance. Reportedly, there was another exit besides the
hole that the sacrifices were dropped through to enter the maze. If the sacrificial person was able to
find the exit before the Minotaur found them, then they were free.

It was rumored that a bright physician from Egypt traversed the maze and escaped. The Egyptian
succeeded by placing one hand on the wall and keeping it there until he came upon an exit. This
technique kept him from becoming lost and wandering in circles.

The Egyptian's technique-always branching the same direction-is called an algorithm. An algorithm is
any special method of solving a certain kind of problem. This algorithm does not guarantee that the
path followed will be the shortest path between the entrance and exit. The length of the path traversed
could be quite long, depending on where the exit is relative to the entrance. Note in Figure 11.1, which
shows a maze with an exit, that the right-hand path, marked by the dotted line, is significantly shorter
than the left-hand path, marked with the dashed line.

Figure 11.1: Maze with an exit.

The technique used by the fabled Egyptian will only work if the maze structure has certain
characteristics, namely:

There cannot be any pits or traps to fall into along the way. (No Minotaur can block the way.)

The exit must be along a wall where it can be detected in the dark by a hand.

The hole in the roof will not be found unless some landmark is erected on the spot.

The exit must be along a wall that is connected to other maze walls, meaning that it is not on an
island, as shown in Figure 11.2.

Figure 11.2: Maze with island exit. The entrance to this maze cannot be used as an exit.

If the maze conforms to these rules and if one sure path is all that's required, then the Egyptian's
algorithm will always work. This technique is systematic and reproducible. It does not matter which
hand you use as long as you do not change hands after you start. This is the simplest maze problem
and possibly the most fundamental general technique for finding a solution.

If the maze has no exit, the Egyptian's algorithm would eventually lead him back to the entrance. In a
no-exit maze, the left-hand and right-hand paths are the same length; one is simply the reverse of the
other.

Undoubtedly, there are nitpickers in the readership saying, "Ahh, but the entrance is also an exit."
Under some circumstances, the entrance could be a viable exit, given the proper tools. Say, for
instance, the person inside the maze had an accomplice on the outside who was willing to provide him
with a rope or a ladder, as Theseus did (more on him in a minute). It is worth mentioning the case
where a person is dropped into an enormous maze and the first wall that comes to hand is part of an
island with no exit on it. If this person uses only the one-hand-on-the-wall method, she will probably
never find an exit. If this person marked her starting point, she would eventually determine that there
was no available exit and would probably try a different method, such as wandering away from the
island.

Trying to find a path to the exit by wandering through the maze does have a chance of success. In fact,
wandering the maze actually has a better chance of finding an island exit than the one-hand-on-the-wall
method.

Trying to find a path through a maze by wandering through it, without a method, is often called ad hoc
testing. The term ad hoc is often used interchangeably with random in software testing, but the two
terms are not the same. Ad hoc testing may or may not be random, and it may or may not be
systematic. Ad hoc means for a specific case only. An ad hoc test is a one-time-only test. The maze-
traversing efforts of the Egyptian and Theseus were ad hoc, because neither one of them ever returned
to do it again. In testing practice, the one-time-only criteria is too often used to justify not keeping any
records and possibly not using any algorithms. After all, why invest in records or methods when the test
will never be repeated? Because of this rationale, most ad hoc testing that is done is not reproducible.

The one-hand-on-the-wall method is systematic and reproducible. If the maze has not changed, the
one-hand-on-the-wall method will always follow the same path. The tester can always turn around, put
the other hand on the wall, and retrace steps to the entrance. This method is only ad hoc if the
sacrificial person never has to go back into the maze again once he has found a way out. Unlike the
Egyptian, software testers are dropped back into the maze regularly-every time there is new code.

Thus, the one-hand-on-the-wall method is not random; it is systematic, because each branch taken is
based on static criteria-that is, always branch right or always branch left. Random simply means without
specific order. Random tests can be reproducible. Tests that are generated at random can be
documented or mapped and later reproduced. This brings us to the maze-traversing method used by
Theseus, the Greek who slew the Minotaur.

Theseus was determined to stop the sacrifices to the Minotaur, and for that reason, he volunteered to
enter the maze. Minos' daughter Ariadne had fallen in love with Theseus. She gave him a ball of
thread, which he tied to the entrance of the maze and unwound as he wandered through the maze.
Theseus found and killed the Minotaur, rounded up the sacrificial men and women, and followed the
thread back to the entrance, where Ariadne lowered a rope for Theseus and the sacrifices to climb to
freedom.

The technique that Theseus used to find the Minotaur was random, because he did not use a
systematic method, such as putting one hand on the wall to determine his course. He simply followed
his instincts till he found the Minotaur. Theseus' technique was ad hoc, because Theseus traced the
path to the Minotaur only one time. The technique used by Theseus will work for any path in any maze
with virtually any structure. If the string is not disturbed, the path can also be retraced at a later time,
making it a reproducible random path.

Theseus succeeded and escaped the Minotaur's maze because he used the thread as a
documentation tool that automatically kept track of the turns he made, allowing him to retrace his path
back to the entrance. Clever testers typically use a key trap tool as their "ball of string." Testers may
hope that they will never have to replay the test captured as they went; but if something breaks, they
can at least try to reproduce the test.

An undocumented ad hoc test may be adequate if the test never needs to be repeated, but it falls short
when the test finds a bug (which is, according to many experts, the whole reason for testing). To
diagnose the bug, someone will have to reproduce it. If there is no repeatable method or string trail,
then reproducing the problem can be virtually impossible. Even when such bugs do get fixed by
development, when the fixes are delivered to test, the testers are not in a position to verify them
because there is no way to retrace the path.

This is the core of what is wrong with ad hoc test efforts. The sacrificial testers are trying to get through
the maze by running through it as fast as they can go-random and ad hoc-rather than using a
systematic approach and marking their trail. If a tester is lucky enough to find the exit and if the director
asks, "What did you test?" the answer is just about guaranteed to be, "I tested i t."

By contrast, in the testing conducted in the prop-up-the-product-with-support scenario, discussed in
Chapter 3, the support person gets to play the part of the hero Theseus and rescue the poor sacrificial
customers from the monster bug in the maze. The support person's mission is clear: a bug exists and
must be removed. Support does not need to know anything else about the maze. The most important
distinctions between test and support personnel are that:

The folks in the test group must go looking for bugs, while the users bring bugs to the folks in
support.

The folks in support are often empowered to fix the bugs they find, while the folks in the test group
are not.

Note In software testing, we need to be able to identify and count the paths through the maze.

We use algorithms to identify and map paths, but we also need to be able to calculate the number of
paths that exist in a given maze based on the properties of the maze. As the maze grows larger and
the number of branching corridors increases, the potential for multiple paths to the exit also grows. If
the maze does not conform to some rules, like the ones necessary for the Egyptian's method, then the
number of paths through a maze can be virtually infinite, impossible to trace or map algorithmically and
impossible to determine by calculation.

Webster's New World Dictionary defines a system as a set or arrangement of things related or
connected so as to form a unity or organic whole. A structured system is a system or subsystem that
has only one entry point and one exit point. The concept of structured programming was introduced
many years ago to help limit the number of paths through a system and thereby control the complexity
of the system. Essentially, structured programming gives the sacrificial testers a sporting chance, by
guaranteeing that there will be only one way in and one way out of the maze, and no trapdoors or pits.

The fundamental path question for software testers is this: "How many paths are there through this
system?" This number is, effectively, one of the two primary measures of "How big i t is." If we can't
establish this parameter, we have no benchmark to measure against. We have no way to quantify how
big the project is, and we cannot measure what portion of the total we have accomplished. We will not
be able to give a better answer than "I tested i t."

The one-hand-on-the-wall approach alone does not answer the question, "How many paths are there?"
The selection criteria are limited to all branches in a single direction. Random testing does not answer
this question either. When paths are selected at random, there is no guarantee that all possible paths
will be selected. Some paths will probably be selected more than once, while others won't be selected
at all. To map all the paths through a system, the tester will need to follow a systematic set of
algorithms.

Determining the number of paths through a maze empirically, by trial and error, can be very unreliable.
Algorithms can be combined in order to trace all paths, one at a time, but this is time-consuming and
virtually impossible to carry out in a large real-time system. In complex systems, a tester using these
methods may never be able to prove that all possible combinations of paths have been traced. For the
purpose of identifying paths, we introduce the concept of linear independence.

Linear Independence

Consider a line that is independent of other lines. For paths, this means only one trace or traversal for
each path is counted. In a structured system with one entrance and one exit, where the object is to
proceed from the entrance to the exit, this is the same as saying the following:

For any structured system, draw each path from the entrance of the system to the exit. Only
count the path the first time you walk on it. In the process of traversing all the paths from the
entrance to the exit, it may be necessary to retrace some path segments in order to reach a path
segment that has never been traversed before, or to reach the exit. But a path through the
system is linearly independent from other paths only if it includes some path segment that has
not been covered before.

When a person becomes lost in the maze, he or she can potentially wander through the maze retracing
steps until he or she dies. The paths followed by the wanderer are not linearly independent. A
programming example of paths that are not linearly independent is a program that loops back to retrace
the same path through the system, repeatedly. In that example, the total number of possible paths is
potentially infinite. The program can get stuck in a loop until someone kills it. Another example is a
logon screen with no functional cancel button, meaning the user cannot leave the logon screen until a
correct and valid password and user ID have been entered. This will cause an infinite loop for any user
who does not have a valid password and ID.

The path traces caused by looping, feedback, and recursion are only counted once as linearly

independent paths, even though they may be retraced over and over again as different paths are
traced through the system. In a program, how many times a loop is traced, along with how many times
a recursive call is made, is controlled by data. When we build our test cases, we will add data sets to
our linearly independent paths in order to exercise the data boundary conditions and the logic paths
accessed by them. Some paths will be traversed many times because of the data that will be tested.
The purpose of this exercise is to calculate the number of paths necessary to cover the entire system.

Let's take a look at two structures that are common in programming and some methods for counting the
paths through them: the case statement and a series of required decisions.

The Case Statement

The case statement is particularly important for software application testers because it is the structure
used in menus. Figure 11.3 shows a typical case statement structure. The maze analogy is a single
room with several doorways in which every doorway leads eventually to the exit. The user has as many
choices as there are doors. Where the program goes next is determined by the user's selection. The
user makes one choice at a time and can always come back to the menu and make a different choice.

Figure 11.3: Case statement structure.

Linear Independence

As shown in Figure 11.4, there are five linearly independent paths through this example. We can
identify them by inspection, tracing them visually one at a time. The first two paths, Paths 1 and 2,
could be found using the left- and right-hand-on-the-wall method. Paths 3, 4, and 5 are the other
linearly independent paths through this maze. Note: Traditionally, the exit arrow pointing down is the
true condition.

Figure 11.4: Five linearly independent paths.

We can also find the five paths by using the following algorithms.

ALGORITHM 1, PATH 1

Enter the system.1.

At every branch, select the true condition for each decision (right-hand) path until the exit is
encountered.

2.

ALGORITHM 2, PATHS 2, 3, 4, 5, AND 1

Enter the system.1.

Select the true (right-hand) path until the first branch where the false (left-hand) path has not yet
been selected.

2.

Take the false (left-hand) branch.3.

Thereafter, always select the true (right-hand) path until the exit is encountered.4.

Anyone who has studied data structures will recognize this method of traversing a tree structure. It is
systematic and reproducible. Using this algorithm, the tester can reliably identify every path through this
system. Other algorithms can be used to solve this problem. By using the systematic approach, we are
sure of what we have done when we finish, and we can count the number of paths that go end-to-end
through the system.

Algorithm 2 will find all five paths. Path 1, the all true (all right-hand) path will be found last, after all the
false (left-hand) branches have been exercised. The reason it is presented with the shortest path as
the first path identified is because this shortest path should be the most important path in this system
from a tester's perspective. It is the quickest way out of the maze. If, for example, this same logic flow
was behind the logon component of a vast and wonderful network, the most important path to both user
and tester is the correct logon scenario. If this simplest and most direct true path does not work, what
good is any other path?

In software, other criteria are used to define paths besides linear independence. Statement coverage
and branch coverage are two examples and are described in the following paragraphs.

Statement Coverage

Statement coverage is a method of path counting that counts the minimum number of paths required to
walk through each statement, or node, in the system. This number may or may not be the same as the
linearly independent paths. In this example, the case statement, only paths 2, 3, 4, and 5 are required
to satisfy 100 percent statement coverage. Note that a tester who only uses statement coverage as a
basis has no requirement to exercise path 1, which is possibly the most important path.

Branch Coverage

Branch coverage is a method of counting paths that counts the minimum number of paths required to
exercise both branches of each decision node in a system. In the case statement example, all five
linearly independent paths are required to satisfy 100 percent branch coverage.

The case statement is a straightforward example. Now we will look at an example that is more complex.

In the case statement, the number of paths required for 100 percent coverage:

Statement coverage = 4

Branch coverage = 5

Linearly independent path coverage = 5

Total paths = 5

A Series of Required Decisions

This construct is important because it is common and it serves to illustrate how quickly the number of
paths can become uncertain and confused. Figure 11.5 is a visual representation of such a construct.
In this type of maze, each branching path leads back to the main path. There is only one branch that
leads to the exit. The number of possible combinations of path segments that one could combine
before reaching the exit becomes large very quickly. This is the type of processing that goes on behind
some data entry screens. For example:

Are the contents of the first field valid? If they are, check the second field. If not, branch to the
exception and then check the second field. Are the contents of the second field valid? If they are,
check the third field. If not, branch to the second field's exception and then check the third field,
and so on.

Figure 11.5: A series of required decisions.

When we use the left-hand method in Figure 11.6, we discover that we have already walked through
each statement or node of the system in only one path traversal. Thus, 100 percent statement
coverage can be accomplished in a single path. Branch coverage can be accomplished in two paths by
exercising Path 1, the right- hand or all-true path, and Path 2, the left-hand or all-false path.

Figure 11.6: Paths 1 and 2.

This means that the tester who performs only 100 percent statement test coverage is missing 50
percent of the branch conditions. The tester performing only 100 percent branch test coverage is
missing all the paths where true and false data conditions are mixed. Example: We have already
discussed two paths through this maze; how many paths are there in total?

If-then-else-structure paths for 100 percent coverage:

Statement coverage =1

Branch coverage = 2

Linearly independent path coverage = 5

Total path coverage = 16

If we select only one branch at a time, we will find four linearly independent paths. Notice that Paths 1,
3, 4, 5, and 6 all traverse some path segments that have been traversed by the others, but each
includes some path segment that is unique to that particular path. All of the right-hand or true paths are
exercised across these four paths. Each left-hand or false path segment is covered one time. Paths 1,
3, 4, 5, and 6 are linearly independent from each other. Each contains path segments that are not
covered by any of the others. Path 2 is not linearly independent from Paths 3, 4, 5, and 6 (see Figure
11.7).

Figure 11.7: Paths 3 through 6.

If we select two branches at a time, we will find six more paths (see Figure 11.8).

Figure 11.8: Paths 7 through 12.

If we select three left branches at a time, we will find the last four paths (see Figure 11.9).

Figure 11.9: Paths 13 through 16.

This series of decisions, with four decision or branching nodes, has 16 paths through it. These paths
represent all the combinations of branches that could be taken through this maze. If all of these 16

paths are exercised, several of the path segments will be retraced many times. A typical program
contains hundreds of branching nodes.

We have been discussing program logic at the code level. We could just as easily be discussing the
logical interaction between many programs in a software system. Both of the preceding examples were
structured systems.

Note 100 percent path coverage is beyond the resources of ordinary test efforts for all but the
smallest software systems.

Given that a software system contains hundreds of logic branches, the number of paths in even a small
software system is huge. Two things should be clear from this example. First, when we map every
possible path, it becomes clear that while many paths segments are covered repeatedly, others may
only be touched once. We won't have time to test them all. Second, even if we have time to test them
all once, we won't have time to retest them all every time new code is turned over. We need to use
rational criteria in order to pick our test sets.

Note It is not feasible to count the paths through such a system empirically or by inspection. What
is really needed is a way to calculate the number of paths that exist in the system.

Calculating the Number of Paths through a System

The tester needs a systematic way of counting paths by calculation-before investing all the time
required to map them-in order to predict how much testing needs to be done. A path is defined as a
track or way worn by footsteps, and also a line of movement or course taken. In all following
discussions, path can refer to any end-to-end traversal through a system. For example, path can refer
to the steps a user takes to execute a program function, a line of movement through program code, or
the course taken by a message being routed across a network.

In the series of required decisions example, each side branch returns to the main path rather than
going to the exit. This means that the possible branching paths can be combined in 2 × 2 × 2 × 2 = 24 =
16 ways, according to the fundamental principles of counting. This is an example of a 2n problem. As
we saw, this set of paths is exhaustive, but it contains many redundant paths.

In a test effort, it is typical to maximize efficiency by avoiding unproductive repetition. Unless the way
the branches are combined becomes important, there is little to be gained from exercising all 16 of
these paths. How do we pick the minimum number of paths that should be exercised in order to ensure
adequate test coverage? To optimize testing, the test cases should closely resemble actual usage and
should include the minimum set of paths that ensure that each path segment is covered at least one
time, while avoiding unnecessary redundancy.

It is not possible today to reliably calculate the total number of paths through a system by an automated
process. Most systems contain some combination of 2n logic structures and simple branching
constructs. Calculating the total number of possibilities requires lengthy analysis. However, when a
system is modeled according to a few simple rules, it is possible to quickly calculate the number of
linearly independent paths through it. This method is far preferable to trying to determine the total
number of paths by manual inspection. This count of the linearly independent paths gives a good
estimate of the minimum number of paths that are required to traverse each path in the system, at least
one time.

The Total Is Equal to the Sum of the Parts

The total independent paths (IPs) in any system is the sum of the IPs through its elements and
subsystems. For the purpose of counting tests, we introduce TIP, which is the total independent paths
of the subsystem elements under consideration-that is, the total number of linearly independent paths
being considered. TIP usually represents a subset of the total number of linearly independent paths
that exist in a complex system.

TIP = Total enumerated paths for the system

e = element

IP = Independent paths in each element

What Is a Logic Flow Map?

A logic flow map is a graphic depiction of the logic paths though a system, or some function that is
modeled as a system. Logic flow maps model real systems as logic circuits. A logic circuit can be
validated much the same way an electrical circuit is validated. Logic flow diagrams expose logical faults
quickly. The diagrams are easily updated by anyone, and they are an excellent communications tool.

System maps can be drawn in many different ways. The main advantage of modeling systems as logic
flow diagrams is so that the number of linearly independent paths through the system can be calculated
and so that logic flaws can be detected. Other graphing techniques may provide better system models
but lack these fundamental abilities. For a comprehensive discussion of modeling systems as graphs
and an excellent introduction to the principals of statistical testing, see Black-Box Testing by Boris
Beizer (John Wiley & Sons, 1995).

The Elements of Logic Flow Mapping

Edges Lines that connect nodes in
the map.

Decisions A branching node with one (or
more) edges entering and two
edges leaving. Decisions can
contain processes. In this text,
for the purposes of clarity,
decisions will be modeled with
only one edge entering.

Processes A collector node with multiple
edges entering and one edge
leaving. A process node can
represent one program
statement or an entire software
system.

Regions A region is any area that is
completely surrounded by
edges and processes. In
actual practice, regions are the
hardest elements to find. If a
model of the system can be
drawn without any edges
crossing, the regions will be
obvious, as they are here. In
event-driven systems, the
model must be kept very
simple or there will inevitably
be crossed edges, and then
finding the number of regions
becomes very difficult.

Notes on nodes: All processes and decisions are
nodes.

Decisions can contain processes.

The Rules for Logic Flow Mapping

A logic flow map conforms to the conventions of a system flow graph with the following stipulation:

The representation of a system (or subsystem) can have only one entry point and one exit point;1.

2.

that is, it must be modeled as a structured system.
1.

The system entry and exit points do not count as edges.

This is required to satisfy the graphing theory stipulation that the graph must be strongly
connected. For our purposes, this means that there is a connection between the exit and
entrance of the logic flow diagram. This is the reason for the dotted line connecting the maze
exits back to their entrances, in the examples. After all, if there is no way to get back to the
entrance of the maze, you can't trace any more paths no matter how many there may be.

2.

The logic flow diagram is a circuit. Like a water pipe system, there shouldn't be any leaks. Kirchoff's
electrical current law states: "The algebraic sum of the currents entering any node is zero." This means
that all the logic entering the system must also leave the system. We are constraining ourselves to
structured systems, meaning there is only one way in and one way out. This is a lot like testing each
faucet in a house, one at a time. All the water coming in must go out of that one open faucet.

One of the strengths of this method is that it offers the ability to take any unstructured system and
conceptually represent it as a structured system. So no matter how many faucets there are, only one
can be turned on at any time. This technique of only allowing one faucet to be turned on at a time can
be used to write test specifications for unstructured code and parallel processes. It can also be used to
reengineer an unstructured system so that it can be implemented as a structured system.

The tester usually does not know exactly what the logic in the system is doing. Normally, testers should
not know these details because such knowledge would introduce serious bias into the testing. Bias is
the error we introduce simply by having knowledge, and therefore expectations, about the system.
What the testers need to know is how the logic is supposed to work, that is, what the requirements are.
If these details are not written down, they can be reconstructed from interviews with the developers and
designers and then written down. They must be documented, by the testers if necessary. Such
documentation is required to perform verification and defend the tester's position.

A tester who documents what the system is actually doing and then makes a judgment on whether that
is "right or not" is not verifying the system. This tester is validating, and validation requires a subjective
judgment call. Such judgment calls are always vulnerable to attack. As much as possible, the tester
should be verifying the system.

The Equations Used to Calculate Paths

There are three equations from graphing theory that we will use to calculate the number of linearly
independent paths through any structured system. These three equations and the theory of linear
independence were the work of a Dutch scholar named C. Berge who introduced them in his work
Graphs and Hypergraphs (published in Amsterdam, The Netherlands: North-Holland, 1973.)
Specifically, Berge's graph theory defines the cyclomatic number v(G) of a strongly connected graph G
with N nodes, E edges, and one connected component. This cyclomatic number is the number of
linearly independent paths through the system.

We have three definitions of the cyclomatic number. This gives us the following three equations. The
proofs are not presented here.

v(G) = IP = Edges - Nodes + 2 (IP = E - N + 2)

v(G) = IP = Regions + 1 (IP = R + 1)

v(G) = IP = Decisions + 1 (IP = D + 1)

Even though the case statement and the series of required decisions don't have the same number of
total paths, they do have the same number of linearly independent paths.

The number of linearly independent paths though a system is usually the minimum number of end-to-
end paths required to touch every path segment at least once. In some cases, it is possible to combine
several path segments that haven't been taken previously in a single traversal. This can have the result
that the minimum number of paths required to cover the system is less than the number of IPs. In
general, the number of linearly independent paths, IPs, is the minimum acceptable number of paths for
100 percent coverage of paths in the system. This is the answer to the question, "How many ways can

you get through the system without retracing our path?" The total paths in a system are combinations of
the linearly independent paths through the system. If a looping structure is traversed one time, it has
been counted. Let's look at an example.

Refer to the looping structure shown in Figure 11.10. All three equations must be equal to the same
number for the logic circuit to be valid. If the system is not a valid logic circuit, it can't work. When
inspections are conducted with this in mind, logic problems can be identified quickly. Testers who
develop the logic flow diagrams for the system as an aid in test design find all sorts of fuzzy logic errors
before they ever begin to test the system.

Figure 11.10: Looping structure.

When it is not possible to represent a system without edges that cross, the count of the regions
becomes problematic and is often neglected. If the number of regions in a model cannot be established
reliably, the logic flow cannot be verified using these equations, but the number of linearly independent
paths can still be calculated using the other two equations.

Most of the commercially available static code analyzers use only the number of decisions in a system
to determine the number of linearly independent paths, but for the purposes of logic flow analysis, all
three equations are necessary. Any one by itself may identify the number of linearly independent paths
through the system, but is not sufficient to test whether the logic flow of the system is valid.

Twenty years ago, several works were published that used definitions and theorems from graphing
theory to calculate the number of paths through a system. Building on the work of Berge, Tom McCabe
and Charles Butler applied cyclomatic complexity to analyze the design of software and eventually to
analyze raw code. (See "Design Complexity Measurement and Testing" in Communications of the
ACM, December 1989, Volume 32, Number 12.) This technique eventually led to a set of metrics called
the McCabe complexity metrics. The complexity metrics are used to count various types of paths
through a system. In general, systems with large numbers of paths are considered to be bad under this
method. It has been argued that the number of paths through a system should be limited to control
complexity. A typical program module is limited to 10 or fewer linearly independent paths.

There are two good reasons for this argument. The first is that human beings don't handle increasing
complexity very well. We are fairly efficient when solving logic problems with one to five logic paths, but
beyond that, our performance starts to drop sharply. The time required to devise a solution for a
problem rises geometrically with the number of paths. For instance, it takes under five minutes for
typical students to solve a logic problem with fewer than five paths. It takes several hours to solve a
logic problem with 10 paths, and it can take several days to solve a logic problem with more than 10
paths. The more complex the problem, the greater the probability that a human being will make an error
or fail to find a solution.

The second reason is that 20 years ago software systems were largely monolithic and unstructured.

Even 10 years ago, most programming was done in languages like Assembler, Cobol, and Fortran.
Coding practices of that time were only beginning to place importance on structure. The logic flow
diagrams of such systems are typically a snarl of looping paths with the frayed ends of multiple entries
and exits sticking out everywhere. Such diagrams strongly resemble a plate of spaghetti-hence the
term spaghetti code, and the justifiable emphasis on limiting complexity. The cost of maintaining these
systems proved to be unbearable for most applications, and so, over time, they have been replaced by
modular structured systems.

Today's software development tools, most notably code generators, and fourth-generation languages
(4GLs) produce complex program modules. The program building blocks are recombined into new
systems constantly, and the result is ever more complex but stable building blocks. The structural
engineering analogy to this is an average 100-by-100-foot, one-story warehouse. One hundred years
ago, we would have built it using about 15,000 3-by-9-by-3-inch individually mortared bricks in a double
course wall. It would have taken seven masons about two weeks to put up the walls. Today we might
build it with about forty 10-foot-by-10-foot-by-6-inch pre-stressed concrete slabs. It would take a crane
operator, a carpenter, and a welder one to two days to set the walls. A lot more engineering goes into
today's pre-stressed slab, but the design can be reused in many buildings. Physically, the pre-stressed
slab is less complex than the brick wall, having only one component, but it is a far more complex design
requiring a great deal more analysis and calculation.

Once a logic problem is solved and the logic verified, the module becomes a building block in larger
systems. When a system is built using prefabricated and pretested modules, the complexity of the
entire system may be very large. This does not mean that the system is unstable or hard to maintain.

It is simplistic to see limited complexity as a silver bullet. Saying that a program unit having a
complexity over 10 is too complex is akin to saying, "A person who weighs over 150 pounds is
overweight." We must take other factors into consideration before we make such a statement. The
important factor in complex systems is how the paths are structured, not how many there are. If we took
this approach seriously, we would not have buildings taller than about five stories, or roller-coasters
that do vertical loops and corkscrews, or microprocessors, or telephone systems, or automobiles, and
so on. If the building blocks are sound, large complexity is not a bad thing.

Note Complexity is not a bad thing. It just requires structure and management.

Summary

Software is a maze and software testers have problems that are not unlike those of the men and
women who were dropped into the Maze of the Minotaur in ancient Crete. While software testing is not
normally considered life-threatening, it is fraught with other perils. Those dropped into the Maze of the
Minotaur were only expected to enter the maze one time, while software testers must keep going back
into the maze until they are sure that they have checked it thoroughly.

There are several types of paths through a software system, as illustrated in the case statement and
the independent decisions examples. How many of each type of path exist in a system is dependent on
the configuration of decisions and processes within the system. Each type of path can be counted.
Following are the four types discussed in this chapter:

The number of paths required to exercise each statement.

The number of paths required to exercise each logic branch.

The total number of paths possible through the system.

The number of paths required to ensure that each path segment is traversed at least once-that is,
the linearly independent paths.

Software testers need to know how many paths they are dealing with so they can estimate how long
their effort will take. Being able to calculate the number of paths through the maze is far preferable to
determining the number empirically, by trial and error.

The tester will also need a map of the maze. The logic flow map, or diagram, introduced in this chapter,
is a simple way to create a map of any structured system. Modeling systems using logic flow diagrams
offer several benefits. When the system is modeled according to the rules of logic flow mapping, three
equations are available to calculate the number of linearly independent paths (IPs) through the system.
If all three equations for calculating IPs are used and all equal the same number, the logic of the
system's structure is shown to be valid-meaning that the logic will work, but not that the logic does the
right thing. The total number of paths through multiple valid linked systems is the sum of the individual
IPs of the systems. This means that various subsystems can be analyzed separately, and their
individual IPs can be summed to give the total number of IPs for the entire system.

The number of linearly independent paths through a system is usually the minimum number of tests
required to exercise all paths in a structured system, one time. Looping and recursive scenarios will be
controlled by the data input to the system. In Chapter 12, logic flow diagrams are applied to the sample
application and used in the estimation process.

Path Analysis Samples for Further Exploration

Answer these questions for each of the following logic flow diagrams You can check your answers in
Appendix A.

Is this a valid logic flow diagram? Why or why not? Calculate the total independent paths, or
TIPs, to help answer this question. If the diagram is not a valid logic flow diagram, construct a
corrected version before proceeding to Question 2.

1.

Find the total number of paths required to satisfy 100 percent coverage for branches,
statements, total paths, and total independent paths.

2.

Exercise 1

Figure 11.11: Logic flow diagram for Exercise 1.

Exercise 2

Figure 11.12: Logic flow diagram for Exercise 2.

Exercise 3

Figure 11.13: Logic flow diagram for Exercise 3.

Exercise 4

Figure 11.14: Logic flow diagram for Exercise 4.

Chapter 12: Applied Path Analysis

Several years ago when I first presented the material in this chapter at a software testing conference, it
was very enthusiastically received, but the audience was very definitely divided into two distinct camps
at the end of the presentation. Bill Silver, who is, among other things, a total quality management guru,
was in the audience. Bill summed it like this: "When Marnie finished her talk, there were two types of
people in the audience. The ones that understood exactly what Marnie was talking about, and the
experts." The rest of this chapter is dedicated to trying to explain my approach to testing in terms
everyone can understand.

Correcting Problems with Depth Perception: Or How This All Got
Started

The project was a shopping application running on a large private network. The director in the project, a
different one than the one I spoke of in the Introduction of this book, came to the presentation with only
one foil. Everyone involved in the project was there-testers, developers, content producers, and
network support. He began his presentation by putting up his foil. It had a picture similar to Figure 12.1
on it.

Figure 12.1: The director's foil.

"This is how it works," he said. "The users log on to the network. They jump to the application, they
select products that they want to buy, fill in a shipping form, give a credit card number, and then log off.
Two to 10 days later, their merchandise arrives at the address they provided. We know there are about
3,000 lines of new code here," he said, pointing to the first bubble, "45,000 lines of code here," pointing
to the second bubble, "and 1,000 lines of code over there," pointing to the last bubble. "There is also
some new code at the distribution centers. But it's not that complicated. We've sized the effort based
on the new function, and we estimate that it shouldn't take more than 12 weeks to write and integrate
the system. Based on the development effort, it should take about two weeks to test it. So, we should
be ready for product rollout about 14 weeks after we start writing code." This is what is known in the
industry as "the view from 50,000 feet." If this is the only view that management sees, those of us in the
trenches are in trouble. This manager had no idea what was behind the bubbles on the diagram.

It's normal at this stage for the testers to have no more idea than the director what is behind those

bubbles. Testers might even have agreed, given what they had just heard, that two weeks would be
sufficient. In this particular case, the tester responsible for the project asked me to help out with the test
estimation. Since all phases of that test effort were planned and executed using the MITs methods, it
has become the example I prefer to use when teaching these methods.

The analysis of the application used the requirements, logical function paths, network paths, and data
analysis to build the test inventory used for estimation. The starting point for the functional analysis was
the GUI. Developers provided the network path details. Almost 400 end-to-end function test scenarios
were required to provide adequate test coverage of that project. Even though the actual test effort was
able to drastically reduce the time required to perform testing by using the methods presented in this
book, along with automated test tools, it still took somewhat longer than two weeks to test the three-
bubble application on the foil.

The Game Show Analogy

I searched for many years for an analogy that would explain the concepts and problems of dealing with
user function paths though real systems in terms everyone could understand. My favorite way of
explaining this is by the Doom [1] analogy. Doom is a hit video game that features an abundance of
dark, confusing, monster-filled mazes, each tucked behind a color-keyed door. For those not familiar
with video games, think of it like a television game show where contestants win whatever is behind the
door they choose. Most people don't have too much trouble imagining a lot of stuff behind one of those
doors.

A software system is like a maze full of doors. Each door is the entry-way to some other component or
process in the system. At each door a decision will be made to open or not to open. Behind each one of
those doors there are other mazes. It is possible to start at the user interface and descend through the
layers of a system into the source code of program modules, and sometimes even into the processing
instructions of the hardware. This type of testing is called top-down testing.

Imagine that each of those bubbles on the director's foil is such a door. This is a very good conceptual
picture of the way internal logic paths of a software system look when viewed from the top down-that is,
from the user's perspective. The tester must verify and validate or, if there is no map, explore what is
behind those doors. Each component in the system has its own internal independent paths (IPs). The
sum of all the IPs is the total for the system. Testing each component independently, bottom-up testing,
will not verify that all the user functions will work properly.

Getting a Map

Top-down testing can proceed very quickly if the tester has a map and knows from the beginning what
he or she is up against-how big i t is, where things are, and so on. In general, however, if there are to be
any maps, it is the testers who will create them, usually as they go. Many test efforts are conducted
without a map ever being created at all. It may just be a holdover from when I did my surveying school
in the Canadian wilderness, but if I have to follow a path with more than two turns in it, I make a map.

True to this real-life scenario, the Doom game has a map function that shows the player a map of the
corridors they have traversed up to their current point in the game. Such a map does not indicate how
much of the maze remains unexplored. In testing, we call this a dynamic analysis test tool. In Doom,
there are also master maps hidden in the maze that show the entire current maze, including hidden and
secret corridors. This type of map is created by a static analysis tool.

In testing, commercial tools that perform static and dynamic analysis typically produce reports of
different characteristics of the system, such as how many branches exist and the call tree structure.
These tools will show the paths that have been traversed on the entire system map. This type of map
combines both static and dynamic analysis and gives the viewer a graphical view of how much of the
system has been traversed and how much remains. These maps are maps of the component-level
paths. So while they are great aids for unit testing and module integration testing, they are generally too
low level to be much help in a top-down system test. Also, these tools are platform- and language-
specific and are generally expensive. If the system under test uses several hardware platforms,
operating systems, and components written in several languages, this means a different tool for each.
And there is no map of the paths between these disparate components in the system.

I have long lobbied for the inclusion of such mapping functions in applications and systems themselves
as part of the code. But historically, diagnostic functions such as these are rarely included in the plan,
and if they are, they are usually the first functions to be cut when deadlines approach. The result is that
inexpensive and easily accessible user function maps have been rare until the advent of the Web.

While static analysis and mapping functions are not included in most traditional software applications,
they are an integral part of a Web application. Most commercially available Web site creation tools offer
site maps that show all the documents and links in a Web site. Figure 12.2 shows the hyperlink view of
a page in the testersparadise.com Web site. Now standard in Web content creation packages, this type
of tool creates graphical maps of the paths from a given page like the one shown here.

Figure 12.2: Automatic hyperlink analysis is a part of most Web content creation tools.

In addition, a series of reports are commonly available today in Web content creation and management
tool sets that can be used to automatically certify that a Web site has no missing files, no extra files,
and no broken links. While such tools can verify all the navigational links in a site, they cannot validate
the links-that is, these tools cannot show that the links go to the logically correct location, only that they
do navigate to a location that exists. Figure 12.3 shows the Web site Reports view from FrontPage
2002.

Figure 12.3: Automatic Web site Reports view in FrontPage 2002.

In addition to reporting statistics on hyperlinks, other reports show items such as unlinked files. These
are effectively dead files that can't be accessed except by a direct link or via a search. The view in
Figure 12.3 shows a Web technician most of the important points of failure in the site. In the figure, the
line highlighted shows that two application components are reporting errors.

Because of their traceability, Web applications lend themselves to automated testing and monitoring.
As a result, they are much more testable than traditional applications. Web test tools cost a fraction of
their traditional counterparts, and they are readily available on the Web. The cost of testing and
certifying the Web equivalent of a client/server application is only a fraction of the cost of testing a
client/server application. But, unfortunately, as helpful as these Web analyzer maps are, they still do
not take the place of a logic flow diagram, as we will see in a moment.

On the dynamic analysis side, the Web server keeps a log of every request made by a user and what
the server did with the request, such as whether it sent the item, transferred the user to a different host,
or returned an error message. Because of this feature, a wealth of information is available about how
users find the site, what they do when they get there, what browsers they are using, and so on. The
paths that users follow can be tracked and analyzed automatically; Figure 12.4 shows some of the
most common usage reporting used in a Web site. There are specialized tools that can extract even
more information than these 13 reports suggest. The graph in the background shows the number of
visitors, page hits, and total hits to the site over a three-month period.

Figure 12.4: Web site usage Reports view in FrontPage 2002.

All of this information is valuable to both testers and administrators. Actual usage information is
invaluable when predicting and monitoring the most important areas to test.
[1]Doom is a trademark of id Software, Inc.

Divide and Conquer

Software systems typically involve connections between several code modules residing in various
components that communicate with each other to accomplish user-selected functions. The following
illustration, Figure 12.5, is a partial system map for a single menu option from the director's three-bullet
foil. The code modules reside in various hardware components and communicate across networks, as
shown in the illustration. When a user selects the menu option, the system interacts across network-
based components in order to perform the function.

Figure 12.5: A three-dimensional representation of the internal paths in the director's three-bullet
foil.

Testers routinely cross boundaries between different types of modules and system components to
follow logical function paths of interest. These boundaries can be ignored or examined in detail. When
there is an undesirable or unusual response from the system, testers routinely divide the test effort
along these boundaries to verify input and output across these boundaries. When the flow between
such boundaries is tested specifically and exhaustively, it is normally called integration testing.

The strategy in integration testing is to send application requests between the components and then
verify and validate the result. If the output of one component is not acceptable to the component
receiving it, a deeper investigation is conducted to determine which component is not performing
according to the specification. This approach to problem solving by decomposing the system into
smaller and smaller components is called divide and conquer.

The total number of tests conducted is the sum of all the tests in all the components. The test planning
process will identify tests in many components, as is indicated in Figure 12.5.

The Paths Not Counted

Testers will follow the component paths through the system to whatever level of detail is necessary to
verify and validate the performance of the component. This means that some code modules will be
trusted or assumed to be stable based on past performance, or point of origin, while other untrusted
components will be examined in great detail.

Note Any element given an IP of 1 is assumed to be stable.

The assumption that a component will behave correctly means that there is only one path through the
component-that is, the correct path. Testers automatically publish this assumption about a trusted
component when they give it an IP = 1. Examples of this simplifying assumption will be presented later
in this chapter. The true count of all possible paths and therefore all possible tests is unbounded. The
tests that are not counted and not performed as a result of simplifying assumptions like this one
actually represent a lot of tests.

The Price We Pay for Using Divide and Conquer

Divide and conquer is an algorithm that human beings have used successfully to manage large
problems for eons. The problem is, every time we divide the problem, we create a new interface that
will need to be tested, tracked, and reintegrated at some point. When faced with a difficult problem,
there is the temptation to keep dividing it into smaller and smaller pieces. This can result in a
sorcerer's-apprentice-type scenario where we end up with a plethora of small problems that still defy
our attempts at management simply because of their number. Care should be taken not to overuse the
technique. In top-down testing the rule of thumb is "If it ain't broke, don't fix it."

Building Path Test Estimates Quickly

Let's take a look at what's behind door number 1 ...

The screen shown in Figure 12.6 is from the second release of the shopping application called Tester's
Paradise. The Tester's Paradise application began as a pseudo-application to allow safe use of
statistics gathered in real three-bubble applications. It was such a good idea that it has since taken on
a life of its own. The most current release is running on the World Wide Web.

Figure 12.6: The main menu from the second release of the Tester's Paradise application.

If the user logs on to the network and navigates to Tester's Paradise Release 2, the menu shown in the
figure is presented. It has five options; each one has a number of function paths behind it.

Application function paths are the logical paths through a function in an application or a system, as
opposed to the paths through a block of source code, which is called a function. For example, following
menu options through an application to perform some function, like "purchase a data flow checker," is
exercising a function in the Tester's Paradise application. The actual number of paths through the
source code of a program function is usually considerably larger than the number of system or program
function paths. An application function path is most commonly accessed by the user via a menu option.

The fastest way to get a quick estimate of how many functional tests need to be run is to count the
navigation options on the system menus. These options are effectively the doors in the system maze.
In a Web application, these navigation options are the hyperlinks. If the tester can't have a map of all
the paths in the system up front, he or she can at least have a count of how many doors there are to be
opened.

Step 1: Building a Menu Map of the System

Many types of maps can be built to help a tester understand and keep track of the system he or she is
testing. The first map built for a system is usually the logic flow map for the highest level of functionality.
In most cases, this is the map of the menu system or user interface. All the other maps for the system
are maps of the details behind the menu options on this first high-level map.

Step 2: Counting All the Menu Options in the System

Counting all the menu options is the fastest way to determine the gross number of independent paths
through the system. This is a big job, but it's not anywhere near as big a job as drawing all the
exceptions.

Note The number of independent paths from a menu is equal to the number of options on the
menu.

Assumption # 1. The user will never get stuck on a menu.

Figure 12.7 shows how the menu options can be modeled as a logic flow diagram. A menu is a case

statement. In order to leave a menu, the user must select something. This means that the number of
decisions on any menu is equal to the number of options minus one (the one that is selected). This
method of counting ignores the trivial case where the user never leaves the menu-never gets out of the
maze. If that case is considered, then the number of decisions is increased by 1. Each menu option
then becomes a decision, and the number of paths on a menu is equal to the number of options plus 1.

Figure 12.7: The Tester's Paradise main menu modeled as a logic flow diagram.

D = Number of options - 1

The IP = D + 1

= (Number of options -1) + 1 = Number of options

Assumption
#2.

The Cancel button is the same as the Close action from the window system menu.
This means that it will not be counted as a separate option. It is assumed that the
system menu will always work correctly.

Assumption #3. The Esc key will always back the user out of the current operation, and it will
always work reliably.

It turns out that it is not a trivial case

I have recently encountered 3 different applications with "no-exit" pages-apparently there is a flaw
in one of the new jsp designer tools that leaves out the navigation button(s) required to proceed to
the next step, so users get stranded on the page. They can use the browser back button to go
back, but they can't proceed forward. I guess if you live long enough you will see all your
assumptions fail at some point.

These assumptions may be incorrect, but they are the reason that the Esc option and the system menu
are neglected in all these menus. If any of these assumptions is proven to be incorrect, the condition
that was neglected because of the assumption will have to be included and the number of paths on
each menu will increase by one option. This will increase the total independent paths (TIPs) for each
menu by 1 as well.

The illustration shows the first set of application screens presented by the designers. The arrows trace

the new application function, View Portable System Monitor, from the main menu. There are eight menu
options on the View Portable System Monitor function path. Each menu option has logic paths
associated with it. The lower-level menus for Our Best System Simulator, Message Data Flow Checker,
and the Screen Comparison-Pixel Viewer are not shown in this illustration. The IP total of the menus
under each of these main options is shown next to each option.

Given the simplifying assumptions, there are 23 distinct menu options being considered in the Tester's
Paradise Portable System Monitor menus. Their distribution is shown in Figure 12.8.

Figure 12.8: The Tester's Paradise Portable System Monitor menu.

The menu option paths are not the only paths that must be tested, but menu options are important
because they serve as key items in the test inventory. Other types of tests that are related to a menu
option are typically grouped under the menu option title in the test inventory. Testing how many times
the program is going to spin through a loop will be controlled by the data used in the function test. The
test data is determined separately. The data tests for the entry fields on the form are discussed
separately in Chapter 13, "Data Analysis Techniques."

Step 3: Counting the Exceptions for Each Menu Option

Each menu option has at least one exception condition associated with it. The most common case is
the error window that opens if any menu selection is unavailable and when the menu option should not
be available. One of the most frequently neglected test sets is the verification that menu options that
should not be available during some function tests really are not available or are "grayed out."

One exception for each menu option is usually a reasonable estimate; however, this number should be
tailored to suit the particular situation. Data entry fields that are required will have one or more error
messages for each type of incorrect data response or data exception. Data-dependent error messages
will be accounted for in the test inventory as part of the data analysis.

Calculate the IPs for the number of exceptions that will be tested. This number can be refined further if

detailed analysis is conducted. This example will estimate based on one exception for each menu
option.

Sample Test Inventory 2

The inventory created using the word processor is used as the base. New rows are added for the
functions, and new columns are added for the path tests.

Tip for Microsoft Word

Fill any empty cells with "0" so that the Table Formula function can be used to automatically
calculate the totals. The cells in the rightmost column, "TIPs," use the formula =SUM(LEFT). The
totals in the bottom row, "Totals," use the formula =SUM(ABOVE).

For additional detailed information, select the Index function in Word's online Help (F1) and search
for "formula." There is a topic that explains in detail how to perform calculations in a table.

Table 12.1: Tester's Paradise Test Inventory

Tester's Paradise (Release
2.0)

Total Path Tests

 Menu Option
Paths

Exception
Paths

Program
Paths

TIPs

Project Information: 0 0 0 0

Fix For Error #123 0 0 0 0

Fix for Error #124 0 0 0 0

Tester's Paradise Main Menu 5 5 0 10

Our Best System Simulator 0 0 0 0

Message Data Flow Checker 0 0 0 0

Screen Comparison - Pixel
Viewer

0 0 0 0

Portable System Monitor
(New Function)

5 5 0 10

Specifics and Options 3 3 0 6

Add-on Platform Adapters 3 3 0 6

View Portable System Monitor 2 2 0 4

Display Portable System
Monitor

0 0 0 0

Order Form 3 3 0 6

Arrange Payment 2 2 0 4

Order Confirmation 1 1 0 2

Support Packages 3 3 0 6

Return to Main Menu 1 1 0 2

Cancel 1 1 0 2

Installation is automatic at
logon

0 0 0 0

Totals 29 29 0 58

Step 4: Building the Logic Flow Maps for the System

Once all the menu options have been counted and cataloged, the next step is to find out what is going
on behind all those menu option doors. It is time to build the logic flow maps of the system. Ideally, the
processes behind the menu options will be described correctly in the project documentation. If the
documentation is inadequate, or nonexistent, the information can be collected by interviewing the
developers responsible for each part of the system. If the modules come from an outside party, it will be
necessary to conduct interviews with developers within that organization to construct the logic flows.
Interviews of some type may be the only way to verify the correctness of the documentation prior to
actual tests of the system.

Some Procedural Notes on Interviews

I use a combination of techniques to conduct these interviews. The techniques that are used to conduct
inspections and the techniques that are used to conduct audits supplemented by basic sales
techniques used to identify compelling events work well.

People are individuals. Each person will require a unique approach. But these techniques are simple
and fundamental. They work for almost every personality type or style. They can be used alone or in
combination to formulate and execute an approach that will get good-quality results with virtually
anyone.

Note Software testing is a contact sport.

A successful tester has a lot of good contacts. I actively cultivate the developers on every project. I
usually do this simply by being interested in what they are doing. I ask a lot of questions about "how
things work." I not only want to know, I need to know. It is not usually hard to get the developer talking
about her or his project. But like inspections, these interviews can be done well or poorly. Developers'
time is in short supply and it must be utilized profitably.

1. Keep It Short and Sweet

The interview should be kept as short as possible. Keep the questions simple. "What happens first?"
"What happens next?" "If this happens, then what?" It is possible to develop a detailed logic flow
diagram after only a few minutes of interview time. Keep a log of how much time was spent in each
session, who was there, general notes, and the logic flow diagram, or changes to a logic flow diagram,
that came out during the session. Development managers will be quick to bar a tester from distracting a
developer if they do not see a benefit from these discussions. By keeping these records and
measurements, I have often been able to show that these techniques allow me to create project
documents at a fraction of the normal cost.

2. Focus on the Facts

There will be many bits of murky, vague, or fuzzy logic during the design and implementation stages of
a project. If a person cannot explain something succinctly, he or she either doesn't understand it or the
person has a communications problem. In either case, a confrontational technique is rarely the most
productive approach for getting an answer.

Instead, focus attention on something inanimate, like the logic flow diagram, a theoretical
representation of the project. A drawing on the whiteboard or a picture on paper (that the tester can
write on and take away) is less threatening than an across-the-table face-to-face discussion. If the
answers aren't immediately forthcoming, write the questions down and come back to them later. At
least the questions have been asked, and the next time there will probably be answers.

3. Draw the Logic Flow Maps

Draw the logic flow maps as soon as possible after the interview while the details are still fresh. Write
down all your questions, and write down the answers you are given. Keep this question-and-answer
log. I usually ask the same questions many times and of many people. I pay special attention to any
questions that get different answers from different people or several different answers from the same
person over time.

Never underestimate your powers of observation. If something doesn't feel right, there is probably a

reason. If it seems like some topic is being avoided, it probably is. The normal reason for avoiding a
topic is that it is not well understood. If the developers can't clarify a point for the testers, somebody
does not understand the topic. I have found that if I have this problem, I am probably not asking the
right question.

4. Conduct a Review of the Logic Flow Maps with the Developers

Take the logic flow maps of the system back to the developers for review. Go over the maps with the
developers; don't just drop them off. This is the part of the process where I learn the most about what is
really going on.

The review, like the interview, should not take long. I ask the developers to go over the diagrams with
me. I ask if I have understood them correctly and if the maps are correct. The process of reviewing
these maps almost always leads to disclosures of other related processes that were not mentioned
previously for one reason or another.

Usually it takes one initial session and two to three review sessions to have an accurate map of the
system, as it exists in reality or in concept at the current stage of development. As the logic flow
changes during development, I encourage developers to make updates to the logic flow and forward
them to me. The gain is that the logic flow maps are much quicker to create, update, and maintain than
wordy documents. And they are mathematically verifiable.

In a perfect world, the designers would initialize the logic flow maps and the maps would be passed
along with the system as it progresses through the development cycle. The diagrams would be updated
by development as the system was developed and would always be available to other groups, such as
the testers. The good news is that logic flow maps are such a flexible tool it doesn't matter who draws
them or when.

Back to Work: Some Things to Remember

The additive property of linearly independent paths was introduced in the previous chapter. This
property will be used to arrive at the total number of paths identified in the system after the analysis
digs down into the internal processes of the application to identify them separately. The first interviews
should focus on understanding how many of the menu processes will need to be analyzed in depth.

Note The TIP is equal to the sum of the IPs in the system.

The highest level of logic flow maps generally comes directly from the GUI menus. Figure 12.9 is the
logic flow map for the menu option View Portable System Monitor, shown earlier in Figure 12.8. It will
be used as the starting point for the interviews and the analysis of the logic behind the menu options.

Figure 12.9: Logic flow map for the View Portable System Monitor menu option.

In this case, the user can either Order Portable System Monitor and Return to Main Menu, or the user
can Return to Main Menu without ordering. There are two paths, IP = 2, through this logic flow diagram.

Note Assigning any element a total independent path count of 1, TIP = 1, states implicitly that the
element is assumed to be stable. Its internal paths are being ignored.

By assuming an element in a system is stable, we are conveniently ignoring the number of actual paths
being executed inside it. If there is no apparent reason to examine the internal paths of an element, it is
assigned a path count of 1. The assumption is that the element will only have one effective path, the
correct path. If the assumption is found to be in error, the element can be analyzed and its internal path
count added to the inventory. Tests can then be written to exercise the most important of those paths.

The First Logic Flow Maps

The logic flow maps in Figure 12.10 were the result of the first interview with developers and designers.
This map shows the logic flow diagrams for Display Portable System Monitor and Order Portable
System Monitor. Notice that the View Portable System Monitor logic flow diagram shows the number of
IPs that have been counted inside the Display Portable System Monitor process node and the Order
Portable System Monitor process node. This type of notation can be used on the menus to show how
many paths are actually associated with each program menu option.

Figure 12.10: Logic flow maps for the entire PSM menu.

Once the user selects View Portable System Monitor, a sequence of events is triggered. The result is
that a picture of the Portable System Monitor is delivered to the user, decompressed if necessary, and
displayed. The function path that determines which type of picture to send and performs whatever
processing is needed to display the picture is automatic as soon as the user selects View Portable
System Monitor.

The Display Portable System Monitor logic flow diagram is a process-level diagram. Normally this type
of analysis is sufficient to arrive at a good estimate of the number of tests that exist in a system. If a
more detailed or rigorous approach is warranted, the number of internal IPs through the system and the
network can be counted. The number of paths through the source code of the modules can be
determined, if necessary, by automated tools that perform source code analysis like LDRA or Cantata.
It is not usually cost-effective to conduct manual path analysis at the source code level.

The Arrange Payment process was given an IP = 5 as an estimate by the group as the time allotted for
the interview ran out. Such estimates are normal and healthy. It is far better to record the best guess
and publish the fact that there are untrustworthy paths behind the Arrange Payment door than to leave
the process with an IP = 1, which implies that it is trustworthy. But they usually require additional
analysis as the analysis process moves forward.

Step 5: Recording the Paths

Record the counts of the individual IPs on the main menu map and in the inventory and total the paths
of interest on the lowest-level menu. Carry the internal path counts from the lower level menus up to the
next-level menu and sum them. Repeat this step until all the internal paths in the system have been
counted.

Table 12.2 shows the record from the Portable System Monitor.

Table 12.2: Record from Portable System Monitor

DISPLAY PSM PROGRAM PATHS IP

Display PSM 4

Order Form 5

Arrange Payment 6

Return to Main Menu 2

Total IP 17

Order confirmation has been neglected for the moment.

The Menu Map

Notice that there is no distinction between different types of paths. The path triggered by selecting a
menu option is counted in the same way and given the same importance initially as a path through
source code or a path through the network. This approach to modeling a system is effective on both
finite state and real-time event-driven systems. For event-driven systems, a set of assumptions are
made about the system's state.

The other three options, Our Best System Simulator, Message Data Flow Checker, and the Screen
Comparison-Pixel Viewer, were analyzed in Release 1. The only difference in these options is that the
order process in Release 1 instructed users to dial an 800 number and place their orders through a
sales representative. For the most part, the path counts shown in this inventory for those options are
taken based on the actual tests used in the Release 1 test effort.

Table 12.3: Sample Test Inventory 3

Tester's Paradise (Release 2.0) Total Path Tests

 Menu Option
Paths

Exception
Paths

Program
Paths

TIPs

Project Information: 0 0 0 0

Fix For Error #123 0 0 3 3

Fix for Error #124 0 0 0 0

Tester's Paradise Main Menu 5 5 0 0

Our Best System Simulator 0 0 65 65

Message Data Flow Checker 0 0 61 61

Screen Comparison - Pixel
Viewer

0 0 76 76

Portable System Monitor (New
Function)

5 5 0 10

Specifics and Options 3 3 0 6

Add-on Platform Adapters 3 3 0 6

View Portable System Monitor 2 2 0 4

Display Portable System Monitor 0 0 4 4

Order Form 3 3 6 12

Arrange Payment 2 2 5 9

Order Confirmation 1 1 0 2

Support Packages 3 3 0 6

Return to Main Menu 1 1 0 2

Cancel 1 1 0 2

Installation is automatic at logon 0 0 0 0

Totals 29 29 220 268

Path and Data Dependencies

The Display Portable System Monitor module is executed unconditionally every time the View a
Portable System Monitor menu option is selected. The logic flow paths associated with Display Portable
System Monitor are controlled by internal conditions in the system, rather than data (see Figure 12.11).
These internal conditions are configuration- and environment-related items, such as whether the picture
must be decompressed before it can be displayed, how much memory is available, and so on. For any
particular system, these conditions will be fairly static once they have been established. This means
that on a given system the same paths will be traversed through this element each time the Portable
System Monitor is displayed. The functional complexity of the Display Portable System Monitor is said
to be path dependent.

Figure 12.11: The expanded PSM logic flow map.

Another way to look at this type of function, from the perspective of the World Wide Web or a
client/server environment, is that this is a downstream-only function. The server sends the requested
data out, and no further action is required by the user or client.

The paths through Order a Portable System Monitor are controlled by user input, including the type and
quantity of items ordered, what method of payment will be selected, and so on. This data will be very
dynamic, and so the number of paths through Order a Portable System Monitor will be dynamic. The
function paths of the Order a Portable System Monitor section are said to be data dependent.

The total number of paths that will be exercised by the test set through the system function is a function
of the number of linearly independent paths plus the number of data set tests.

Summary

Much of the success of a test effort is dependent on having a good estimate of the size of the test effort
in the beginning. It is very common for test projects to be underestimated because too little is
understood about their depth.

A good estimate starts with a good analysis. A map of the menu options alone is a quick way to begin
to understand the depth of the project. A logic flow map is an invaluable tool for understanding the size
of the undertaking and for tracking what has and has not been accomplished.

The map-building process is incremental. It does not matter who builds the map; any work that is done
will help improve the test sizing estimate. The map constructed so far shows the function paths through
the application. The paths controlled by data are analyzed next.

There is considerable pressure to do the minimal amount of testing. As a result, top-down approaches
are popular. A top-down divide-and-conquer approach can yield a highly effective test effort.

Chapter 13: Data Analysis Techniques

Overview

I once had a job interview that involved a three-week contract to test a new mouse driver. During the
interview, I was asked how many tests I thought would be needed to test a new mouse driver on a 640
x 480 display. I did a quick calculation and responded that I would need to perform 307,200 tests for a
rigorous test effort, but that most of the bugs would probably be identified in the first 153,600 tests.

This answer took only a few seconds, but the explanation of how I got it took considerably longer and
ended up involving most of the test department. That answer is presented in this chapter. In the end, I
did not get a job to test the mouse driver; the test department wasn't comfortable working with someone
who wanted to run a minimum of 153,600 tests in three weeks. I did get a contract to write an
automated test tool to run the tests that were eventually selected.

In this chapter, I show you my favorite methods for analyzing the data requirements of the application,
along with the techniques I use to cut the number of data sets down to a manageable size. I am not
going to try to do justice to this vast topic here. For a complete set of techniques to use in determining
answers to this type of question, see Boris Beizer's book, Black-Box Testing (Wiley, 1995), which is the
best source I have ever found.

Testing Data Input by Users (the GUI)

Most of the data testing we do these days is user input, and that is what we concentrate on in this book.
I have included one example about testing raw data in quantity-the real-world shipping example
mentioned repeatedly throughout the book. That was the one test project I had in 10 years in which I
tested raw data in quantity. One part of the integration effort was to test the integration of the acquired
company's car movement data stream with the parent company's car movement data stream.

The team accomplished this testing in a completely manual mode even though millions of messages
had to be analyzed and verified. The testers were all SMEs and senior staff members. The complexity
of their analysis could not be automated, or even taught to professional testers. Every verification and
validation required the experiences of a lifetime and the expertise of the very best.

The effort was an enormous undertaking and cost four times more than the estimates. I believe that
budget money was appropriated from every other department at the parent company to pay for it.
Nevertheless, it was mission-critical that those data streams maintained 100 percent integrity, and
consequently, no price was too high for the test effort that ensured the success of this integration effort.

Data-Dependent Paths

Some paths will be more data-dependent than others. In these cases, the number of tests performed is
a function of the number of data sets that will be tested. The same path, or at least parts of the same
path, will be exercised repeatedly. The data will control the branches taken and not taken.

If you approach data analysis without considering the independent paths, you will certainly miss some
important paths. In my experience, this is how many hard-to-reproduce bugs get into production.
Someone tests all the main, easily identified data sets without considering all the possible exception
paths. This is why I recommend performing the path analysis and then populating the paths with the
data sets that are required to exercise the most important paths, rather than the other way around.

Having said that, I must add that users do some unexpected things with data, and so an examination of
paths alone will not suffice to cover all the exceptions that will be exercised by the user.

Some Thoughts about Error Messages

Error messages for data exceptions are an important consideration in a good test effort. In my study of
production problems at Prodigy, it became clear that virtually all of the most tenacious, expensive, and
longest-lived production problems involved one or more missing or erroneous error messages. These
problems had the most profound impact on customer service as well.

Data-dependent error messages need to be accounted for in the test inventory as part of your data
analysis. I haven't seen a complete list of error messages for an application since 1995. In today's
object-oriented architectures, they tend to be decentralized, so accounting for them usually requires
exploration. I generally estimate how many I should find when I do my path analysis. There should be at
least one error message for each exception path and at least one data error message for each data
entry field. This area of testing may be a minor concern to you or it may be a major issue. Here are a
couple of examples of what I mean.

There was a startup company with a B2B Web application that I tested during the dot-com boom. There
was only one error message in the entire Web application. The text of the error message was just one
word: "Wrong." This developer's error message "placeholder" appeared whenever the application
encountered a data error. The testers complained about the message, and they were told that it would
be replaced by the appropriate text messages in due course. Of course, it was never fully eradicated
from the system, and it would pop up at the most inconvenient times. Fortunately, this company went
into the sea with the other lemmings when the dot-coms crashed.

On the other end of the spectrum, I had the pleasure to write some white papers for a Danish firm that
developed and marketed the finest enterprise resource planning (ERP) products I have ever seen.
Reviewing (testing) their products was the most wonderful breath of fresh air in testing I have had since
Prodigy. Their products were marketed throughout Europe and America, and simultaneously supported

many languages.

To ensure high-quality, appropriate, and helpful error messages in many languages, they incorporated
the creation and maintenance of the error message text for any required language into their
development platform. The development platform kept a to-do list for all unfinished items, and
developers could not check in their code as complete until the error messages were also marked
complete. The company hired linguists to create and maintain all their text messages, but it was the
responsibility of the developer to make sure the correct messages were attached to the exception
processors in their code.

This system worked wonderfully in all its languages. The helpful text messages contributed to both high
customer satisfaction and fewer calls to customer service.

Boundary Value Analysis

Years ago I read a headline somewhere that said something to the effect that "boundary value analysis
is the most important test technique there is." My reaction was, "Of course it is; every animal on my
farm can tell you that." Boundary value analysis (BVA) is one of the most fundamental survival
techniques there is. The trick is recognizing the boundaries as boundaries and then cataloging their
properties correctly.

Boundary value analysis is a test data selection technique in which values are chosen to lie along data
extremes. Boundary values include maximum, minimum, just inside and outside boundaries, typical
values, and error values. The hope is that if a system works correctly for these special values, then it
will work correctly for all values in between. These values are the most important test cases.

Boundary Value Analysis Example

I will continue to use the method of payment test items from Chapter 12. Figure 13.1 shows the
payment details page from the Tester's Paradise Web application. Let's consider the matter of credit
card authentication.

Figure 13.1: The Payment Details page.

There are two types of tests that need to be conducted on this page. First, we need to verify that the
individual data fields are being validated correctly, and second, we need to verify that the data set
produced by validated field values from this page is being validated correctly.

A Survivalist View of Boundary Analysis

There is a path on my farm that leads from the barnyard down to the pond and then around the
pond to the pasture. My ducks follow this each day as they make their way from breakfast in the
barnyard to the water for their day's activities and then back again in the evening for dinner and
sleep. One morning there was a branch from an old oak tree about 18 inches in diameter lying
across the path. It had fallen during the night.

The ducks approached it cautiously. Each duck inspected the log carefully from the barnyard side,
paying special attention to the area where the log met the path. There were gaps between the log
and the path, but none big enough for a duck to squeeze through. Once the ducks were satisfied of
this, they began to inspect the top of the log, and stretching as far as their necks could reach on tip
toe, they examined the other side.

The log was just big enough that they couldn't quite see the ground on the other side, so they
would not risk leaping over onto uncertain ground. A couple of the ducks returned to the barnyard.

A couple of the ducks decided to explore to the ends of the branch to see if they could find a way
around it. And the largest and bravest duck found a way to climb up to the top of the log, and she
continued her inspection of the far side from there. Eventually, she found a gentle, branching way
to get down to the path on the pond side.

One of the ducks who tried to go around the log through the brush succeeded in getting through
and also made it to the pond. The last duck met a big black snake in the brush and would have
probably been bitten except for the intervention of the dog.

A few minutes later, I came to the log while walking my horse out to the pasture. He stopped and
gave it a similar inspection. First checking, by eye and by smell, the side closest to him, then the
log itself, and finally using his height, he thoroughly inspected the far side. He was not interested in
stepping over the log until he was quite satisfied with the ground on both sides and the log itself.
After the duck's adventure with the snake, I was not inclined to rush him. The interesting thing was
that coming back that evening, he again refused to step over the log until he had completed the
same inspection from the pond side.

Horses are prey animals, and consequently they do not rationalize obstacles. That means that just
because it was safe to go across the log in one direction didn't mean it was safe to go across in the
other direction. They treat every side of a boundary as a unique challenge and potential threat. This
is a fundamental survival instinct.

I first told this story to a group of testers in a corporation that manufactures huge boom-ables. The
consensus was that the ducks were very good testers. But the horse must have been a tester in a
safety-critical industry in some past life.

Field validation can happen in the browser or on the server. It is normal to try and do simple field
validation in the browser, because it saves the round trip to the server and offloads this minor
processing to the client, freeing the server's resources for more important tasks.

A credit authorization requires a valid credit card number of the type of credit card selected-Visa or
MasterCard in this case-and a valid expiration date. The expiration date must have a valid month and a
valid year and must be the correct expiration date for that particular card number. Further, the user
must also provide the correct four-digit security code, called a card verification number, found on the
back of the card.

Drop-Down Selection Boxes Only Keep Out Honest People

If you are looking at the drop-down selection box in Figure 13.1 and thinking, What is she talking
about? You can't test a"-1"or a "13" in the month field since it's a drop-down, then you should think
again. Drop down boxes like this one have done a lot to help keep incorrectly typed data from
getting to our applications, but they are not a panacea.

Recently, a Web store owner I know called to ask f I could help figure out what was going wrong in
his electronic store. It seemed that something locked it up on a regular basis, but the server logs
showed nothing. The Visual Basic (.asp)-scripted store would simply stop creating pages about
every three days. It required a full server restart to get the store functioning again. The hosting
company was not happy to interrupt service on all the Web sites in the server every three days so
the store could go on.

I agreed to take a look. Sure enough, I managed to dig up an obscure application log that seemed
to have lots of funky-looking command strings in it. After a bit of thinking, I realized I was looking at
a series of artificially generated bogus command strings. The store had logged them because it
had not been able to process them.

It turns out that it was an easy matter to send edited command strings to the store and lock it up.
So, some hacker was creating these command strings in a text editor and sending them to the
store. The store's response to these bad command strings was to lock up. Locking up was the only
exception processing in the software; there seemed to be no data validation taking place in the
application logic. The store's ASP developers were depending entirely on the HTML/ASP user
interface to validate the user input.

Hackers have a field day with such weak applications, and someone obviously was onto this one.

Field Validation Tests

As the first example, I will use BVA and a data-reducing assumption to determine the minimum number
of tests I have to run to make sure that the application is only accepting valid month and year data from
the form.

Translating the acceptable values for boundary value analysis, the expiration month data set becomes:

1 = month = 12

BVA-based data set = {0,1,2,11,12,13} (6 data points)

The values that would normally be selected for BVA are 0, 1, 2, and 11, 12, 13.

Using simple data reduction techniques, we will further reduce this number of data points by the
following assumptions.

Assumption 1. One of the values, 2 or 11, is probably redundant; therefore, only one midpoint,
6, will be tested.

Month data set = {0,1,6,12,13} (5 data points)

This next assumption may be arbitrary, especially in the face of the hacker story that I just related, but it
is a typical assumption.

Assumption 2. Negative values will not be a consideration.

Figure 13.2 shows how I like to visualize the boundaries for this range. Every value that falls within the
hatched area, including my test data, 1, 6, and 12, is valid, and all values outside these areas, for
example, 0 and 13, should fail.

Figure 13.2: The boundary value range for a valid month.

Likewise, the valid field data set for the expiration year becomes

2002 = year = 2011

BVA year data set = {2001,2002,2003,2010,2011,2012}

Again, I will apply a simplifying assumption.

Assumption 3. One of the values, 2003 or 2010, is probably redundant; therefore, only the
midpoint, 2006, will be tested.

BVA year data set = {2001,2002,2006,2011,2012}

These two fields, a valid month and a valid year, are combined to become a data set in the credit
authorization process. These are the data values that will be used to build that test set. But before I
continue with this example, I need to mention one more data reduction technique that is very commonly
used but not often formalized.

Matrix Data Reduction Techniques

We all use data reduction techniques whether we realize it or not. The technique used here simply
removes redundant data, or data that is likely to be redundant, from the test data sets. It is important to
document data reductions so that others can understand the basis of the reduction. When data is
eliminated arbitrarily, the result is usually large holes in the test coverage. Because data reduction
techniques are routinely applied to data before test design starts, reducing the number of test data sets
by ranking them as we did with the paths may not be necessary.

Note Generally use matrix data reductions rather than data ranking.

The following section illustrates some good defensible data reduction techniques. But there are a
couple of rules:

Do not apply this data reduction technique to individual data items-only to data sets.1.

Use your assumptions and the test inventory to document your data reductions.2.

The matrix data reduction is accomplished by building the matrix of possible combinations of the
individual data and removing redundant sets. Again, be sure to write down the assumptions you use to
remove data sets from your test set. In the previous section, I made the assumption that any point
between the two boundaries would be OK as a test point-that I didn't need to test a number immediately
adjacent to the boundary. In this case, I will be making a similar type of assumption, but the results can
have a profound impact on the total number of tests that are left after reduction.

This is a very typical assumption that testers make all the time, but they rarely write it down. Typically,
we make a guess about boundaries. In my testing over the last year, I have found that the single
biggest source of error is in boundaries in the data entry field.

For the data reduction matrix, I will combine the two individual data sets that were just created in order
to make a set of month, year combinations. Once I have done this, I will have to test to validate the
month and year. If I have a good month but a bad year, the test is going to fail, or vice versa. Now I will
show you how to build a data set matrix that allows you to consider further data reduction of your test
sets.

Data Set Tests

A valid expiration date field must have both a valid month and a valid year using the two data sets
selected previously:

{0,1,6,12,13} and {2001,2002,2006,2011,2012}

This gives us, {month, year} 5 × 5 data combinations = 25 possible combinations. Figure 13.3 shows
the possible combinations of these data and their truth table outcome.

0,2001

FF

1,2001

TF

6,2001

TF

12,2001

TF

13,2001

FF

0,2002

FT

1,2002

TT

6,2002

TT

12,2002

TT

13,2002

FT

0,2006

FT

1,2006

TT

6,2006

TT

12,2006

TT

13,2006

FT

0,2011

FT

1,2011

TT

6,2011

TT

12,2011

TT

13,2011

FT

0,2012

FF

1,2012

TF

6,2012

TF

12,2012

TF

13,2012

FF

Figure 13.3: The data set for a valid date field expanded.

Note If I had used all 6 BVA data items, there would be 6 × 6 = 36 data sets to test. So the data
reduction assumption saved 11 data set tests. Looking at it another way, applying this data
reduction technique reduced the BVA tests by 31 percent.

Notice the True (T) and False (F) value notation. The shaded areas in the matrix, all the values around
the edges, should fail because they contain at least one false value, so the month, year set should fail.
There are 16 data sets that should fail. The nine data sets in the middle of the matrix are all true, so
they should pass. Notice that there are almost twice as many exceptions as there are passing sets.

This matrix provides a systematic way of visualizing how the data sets behave. I can use this pattern to
my advantage if I need to reduce the number of data tests. If I select sets from this matrix, I can make
sure I get a representative set, because I can see the pattern, rather than some ad hoc random
sampling. I can test the extremes, the mixed sets, and the all-true sets-without testing every single
value.

I can make a good guess at the proportions of TT, TF, FT, and FF sets I need to test because I can
see how many of each there are. I also know that I have almost twice as many sets that should fail as
sets that should pass. Let's say that I want to cut the number of tests in half. I can probably pick a
representative test set by choosing

16/2 = 8 failing sets

I would select all four FF sets, 2 TF sets, and 2 FT sets.

And for

9/2 = 4.5 (round up to 5) passing sets

I would select each of the corner TT sets, {1,2002}, {12,2002}, {1,2011}, {12,2002}, and the one in the
center of the matrix, {6,2006}.

Note This would reduce the number of test sets I plan to test down to 13, or 36 percent test
coverage of the original BVA estimate of 36 test sets.

This is a small and simple example, but it clearly demonstrates the principle of using the matrix data
reduction technique. This method is systematic and reproducible-as long as you document your
assumptions. In a completely new environment where no components are trustworthy, it would be far
better to test all the data sets, but I don't usually have time.

Building the data sets this way is a bottom-up process. I may test from top down, but I build my data
sets from the bottom up whenever I can. With that in mind, let's go on to look at another technique for
building test data set requirements from the bottom up as we go on to the next step, determining the
data sets required to test credit authorization.

Data Set Truth Table

At first glance, Table 13.1 might seem trivial. Obviously, all these values need to be valid or we will
never get a credit card authorization to pass. But consider it a different way. Let's say we put in a valid
date and a valid credit card number, but we pick the wrong type of credit card. All the field values are
valid, but the data set should fail. To build the data sets that I need, I must first understand the rules.
This table tells me how many true data values I need for each one card to get a credit authorization.

Table 13.1: The Credit Authorization Truth Table

Data Set 1-The set of all
Valid Data, all in the
data set

Is a valid
value for
the field

Is a valid
member of
this Data Set

Minimum
Number of
Data to test

Minimum
Number of
Data Sets to
test

Cardholder Name

First Name1. True True 1

Last Name2. True True 1

Billing Address

Street Address2. True True 1

City3. True True 1

State4. True True 1

Zip5. True True 1

Credit Card Information

Card Type6. True True 1

Card Number7. True True 1

Expiration Month8. True True 1

Expiration Year9. True True 1

Card Verification
Number

10. True True 1

OUTCOME: True True 10 1

Note My goal is to build the fewest number of test sets possible. If I can, I will build the data sets to
verify credit authorization using data that will verify the field processors at the same time. So,
I can run one test series and verify both the fields and the function.

Published Assumptions

Assumption: Once the field processors have been verified for one credit card, they will be
assumed to be stable for all credit cards.

We're going to assume once the field processors have been verified for one card, they are going to
work for both credit cards. In one test effort our team did assume this initially, and it was a bad
assumption, but happily it didn't bite us because we published it in the test plan.

One of the programmers came forward and told us that the field processor for the credit card number in
the client was checking to make sure that only numeric data was placed in the field; however, there was
another process to validate that it was a valid credit card of the type selected, for example, Visa or
MasterCard. This second validation took place after the information was submitted to the online
application. The application was using a specific algorithm for each type of card selected by the user.

This is a common problem when testers can't know for sure "where" validation is occurring. We would
only have been testing one of the algorithms; we wouldn't have validated both of them. Because we
stated this assumption in the test plan, the developers picked up on it and let us know.

The card verification number is another field that might be processed by a different logic routine
depending on the type of card. This is another example of one of those hidden boundaries that testers

don't know about. If I only define tests to test what I know about, I will probably just run two tests for
each card, one valid and one invalid. That's four data set tests in all:

10 valid data + 10 invalid data = 20 field tests for each card

These two test sets should yield two test sets for one card; one will pass authentication and one will
fail. This will test each of the field validation processors once.

We have to perform all these tests for both credit cards:

20 x 2 = 40 field tests for 2 credit cards

But as I have just explained, this is too small a test set to detect any hidden boundaries, unless I get
very lucky. So, I will want to add some data values to help me probe the code just a bit. Before I add
any tests, there is another assumption that I want to consider.

Assumption: Whether field data will pass or fail is independent of validity of the data set.

The field tests don't verify any data sets; they just verify that field tells us that data. Mixing valid data
from different sets will cause the data set to be invalid, even though all the field processors have been
satisfied. Could be a good credit card number and a good date, but they may not work together. So the
field test set is only going to tell us about the field problems. This assumption also addresses the logic
flow of the field data validation processing. Whether field data pass or fail is independent of the data
combination. I am assuming that once the field processor tells us whether or not it's good data, it will
always be able to tell us if it's good data, regardless of whether or not some other field is valid.

So when we count up the minimum number of field tests on the data in all those fields, at minimum
there are 10 valid data to make one set, and 10 invalid data. One good case and one bad case. At the
very minimum, we have to come up with 20 field data items for one card. Then we have a total for two
credit cards, so we multiply by 2 for a total of 40 field tests.

As I said, I don't think that this is enough coverage to provide an adequate test effort. If you are
wondering if extra coverage is necessary, see the discussion on Web services in the Caveats section
coming up. I don't want to just beat on the application in a random fashion. I would like to identify
potential hidden boundaries and test them. I need a tool to help me decompose this large data set into
its components so that I can visualize where such hidden boundaries might be found. Table 13.2 shows
one approach to accomplish this.

Table 13.2: Data Set Validation Table

Data Set Credit Card #1 Field Test
Outcome

Data
Set

Data Set Test
Outcome

(All Valid & set)1. Valid Valid Valid

(All invalid data)2. Invalid Invalid Invalid

Card Type Set3. Valid Invalid Invalid

Card # Set4. Valid Invalid Invalid

Exp. date Set5. Valid Invalid Invalid

Card Verification #
set

6. Invalid Invalid Invalid

 means "is a member of"

 means "is NOT a member of"

Each of the six items in Table 13.2 has two distinct possible outcomes for the field and data set
validations. Each of these six items is a data set. According to this table, I need six data sets to test the
card validation process. This gives me the opportunity to try multiple values for each data item. I will
use this number of tests in my actual test count.

The Process for Building Sufficient Data Sets from the Bottom Up

The following is the process I recommend for building sufficient data sets from the bottom up-and which
I use for all my work:

I start with two good sets of data, one for each card. This will ensure that I have tested the most
important all-true paths.

1.

Next, I prepare a list of all the invalid data values that I want to test to verify the field validation
routines. For example, if I need to check for negative numbers, or nonnumeric characters in
numeric fields and so on, then I will quickly build up several tests for the numeric fields-and that
means more than two complete test sets. If this happens, I will create more data sets to
accommodate these field tests.

2.

Most important, I will try to get a look at the logic paths that do the credit authorization. I want to
know how the application is verifying the data set for the credit authorization. If I can identify any
data boundaries in the application validation logic, I will add test data to create test sets to test
those boundaries.

3.

Stated as it is here, this may seem like a trivial example, but it is no accident that most credit card
authorization is handled by specialized companies as secured Web services. Anytime there is an
opportunity to commit fraud, there are hackers ready to try.

In all, I will prepare at least five sets of invalid data for each credit card. This gives me the opportunity
to test at least five exceptions for each data field.

(1 valid set of data + 5 invalid sets) x 2 credit cards = 12 data sets

The next example on the test inventory is the new Purchase Option: Not available in some states
(data). This is an adjunct process that must consider each product and compare the buyer's state rules
against the rules of the selling state. This is actually an international issue rather than a U.S. interstate
issue. Some products can't be sold in some countries. The processing that verifies and says yes or no
to a particular sale is quite complex and beyond this discussion.

I have approximated it here by stating that each state will require a test, so the number of tests is 50.

Finally, Minimum Order must be $30.00 (data). I assumed a simple BVA for this test, for example,
$29.99, $30.00, and $31.00. Interestingly enough, I recently broke an application trying to make a
purchase that was for too large an amount. Having completed this much data analysis, Table 13.3
shows the most recent version of our sample test inventory. The total data set tests, 77, will be carried
to the MITs Totals page in the spreadsheet. I will show you the results of the analysis we conduct in
Chapters 12 and 13 in the next chapter, "What Our Analysis Tells Us and What's in Store in the Near
Future."

Table 13.3: Sample Test Inventory 3

Tester's Paradise (Release 2.0) Data
Sets

Existing Data
Tests

System Data
Tests

Project Information:

Fix For Error #123 0 7 0

Fix for Error #124 0 4 0

Tester's Paradise Main Menu

Our Best System Simulator

Message Data Flow Checker

Screen Comparison - Pixel Viewer

Portable System Monitor (New Function)

Specifics and Options

Add-on Platform Adapters

View Portable System Monitor

Display Portable System Monitor

Order Form

Arrange Payment

Method of Payment (Path)

Method of Payment limited to 2 credit
cards (Data Sets)

12

Purchase Option: Not Available in some
states (data)

50

Minimum Order must be $30.00 (data) 3

Order Confirmation

Support Packages

Return to Main Menu

Cancel

Installation is automatic at logon 1

Totals 65 11 1

Total Data Tests 77

Caveats

BVA isn't always enough. There can be problems and times when you reduce the data set too far, as I
have just pointed out. Here are some of the things to keep in mind as you plan your data testing.

Hidden Boundaries

Boundary value analysis provides us with an invaluable data reduction technique for test data selection.
The risk of missing a significant error in some other part of a number line is very small when you use
good boundary analysis techniques-unless there is another boundary in your test range that you don't
know about. For example, when we tested the logon application at Prodigy, we used boundary value
analysis to determine the test set. The testing went well, and the application was sent to production.
But soon after it went live, we started experiencing user profile corruption problems.

The Prodigy Services ID was made up of four alpha characters, two digits, and one alpha character-for
example, HFDC15A. Non-alpha and nonnumeric characters were not allowed, for example, spaces and
punctuation characters.

The testers tested all the forbidden characters in the first four slots, and they tested several
permutations of punctuation and alpha characters in the numeric slots 5 and 6, and so on. The one
thing they did not think to test was a space in the fifth slot. Of course, almost immediately a clever user
did perform this test when he or she was trying to log on the first time.

First-time logons were very special events back in the days when we were using data tape, DASD, to
store our information. It turned out that a failed first attempt ruined the entire user profile. So the user
would need to call customer service and receive a new ID before he or she could join the service.

This was a very hard bug to isolate and reproduce, because users who encountered it could not
remember exactly what they had done. And as far as they were concerned, they hadn't done anything
wrong.

We finally found the bug by building a complete test suite that systematically tried every character on
the keyboard in each slot. When the space was typed into the fifth slot and the logon was submitted, an
error was generated and the user profile was corrupted. With this evidence in hand, we were able to
find the problem.

What Was Really Going On

Bug no. 1. Unknown to us, there was a boundary at the fifth character-a different subroutine. A
numeric validation routine evaluated slots 5 and 6, and it did not have the logic to check for a
space character. A simple omission.

Bug no. 2. When the space character was sent to the logon application in the mainframe that
verified the user profile, which did not have logic to protect it from an illegal character (that was
supposed to be handled at the client), the mainframe process overwrote the profile with the bad
information and corrupted the record.

Bug no. 3. The error message sent to the user told them that they had committed a security
breach. This, of course, was not quite correct.

Boundary value analysis automatically picks the most important data points. Ranking is not usually
necessary. This really cuts down the number of tests that you have to run while still minimizing the risk
of missing some point of failure.

Web Services

Back in the late 1980s, users typing data into fields on a GUI was the unknown territory. All the
validation code, the processing code, and the messages were brand-new and not to be trusted. The
network protocols and interfaces were nowhere near as stable as what we have today. Server

technology was in its infancy. However, we could at least be sure where our application logic was
coming from. We could make bold statements like, "The application had been tested and was ready to
go to production." I fear this will not be the case in the coming years.

Software as a service has been threatening to become a part of the application landscape for over 20
years. It was inevitable that some day it would become acceptable and profitable. Slowly but surely,
Web-based software subscription services are becoming a reality in the Internet landscape. For
example, look at eBay and PayPal. Taken together, these are a first-generation retailer Web service,
robust and thriving. Anyone can become a shopkeeper. Next, consider the now-ubiquitous virus
checkers and operating systems that automatically go "home" to check for updates in the background,
and you don't need to know about it. There is Quicken Online, TurboTax-the list is getting longer every
day.

Most of us have come to appreciate at least a few of these services even if we don't entirely trust the
direction they are taking us. The caveat I see has more to do with the current "next generation" of Web
services. These XML-based programs can live on any Web server and advertise their services in
globally available search engines in the Universal Description Discovery and Integration (UDDI)
servers. Programs can automatically locate and identify these Web services through their UDDI
listings, which define the entire contract for the Web service, including what they provide and how you
have to compose your requests to get these offerings.

Developers envision this to be the next opportunity for the independent development entrepreneur.
Since these Web services are not high profile like eBay, they are background processes for the most
part, and they will be hard to track. These contracts are all made programmatically behind the scenes.
No humans need to be involved. The users have no idea where the actual processing is being done. It
may be, for example, that your travel company contracts with a reservation Web service to get flight
information, a Tester's Paradise Web service to find hotels, and so on.

How can we be sure that the Tester's Paradise Web service is legitimate? How can we be sure where
they are sending our data?

How can we enforce a service-level contract when we can't be sure we are still using the Tester's
Paradise Web service?

I don't have simple answers for any of these questions. I have already had a couple of bad experiences
trying to debug problems when a third-party Web service was involved. I don't look forward to testing
this next generation of Web services. If they really catch on, we testers will probably have to go back to
an IP traffic monitor to even be sure who or what the application is talking to.

I mention this here because it has a profound impact on the verity of the applications and the very
boundaries we take for granted, that we think are static and dependable. If you don't know where your
data is coming from, or what module is performing the business logic calculations in your application, if
these processes can be replaced without warning or sign, we cannot assume the things will work the
same tomorrow as they did today.

Summary

Users can do unexpected things when entering data, and hackers will definitely test the limits. But in my
experience, the most important data comes into most systems through the user interface.

Boundary value analysis is a powerful technique for picking the most probable failure points in the data.
You can reduce the amount of testing by two-thirds or three-quarters based on your assumptions. Just
beware of hidden boundaries, because with such a reduced test set, there are huge holes in your test
coverage.

When testing the data-handling capabilities of an application, I like to build my data sets from the
ground up and then perform data reduction on the resulting sets, to cut down the number of tests based
on probable redundancy. I continue this process until I have a test set that is both concise and doable
in the time allowed.

We instinctively use boundary analysis constantly. Be sure to document it when you do it, so that
others have the chance to correct your faulty assumptions. Data reduction is another powerful
technique for further reducing the number of tests that you may have to run. This is another technique
that we use instinctively. Again, be careful to document your assumptions.

Watch out for the things that you didn't expect or plan for. I try to throw in a few extra off-the-wall tests
just to see what happens. Every once in a while, something unexpected does happen, and the truth is
always stranger and more interesting than fiction.

For those of you wondering about the mouse driver data estimate in the beginning of the chapter, the
number came from the following matrix:

640 × 480 pixels = 307,200 possible locations for the mouse to click on

When you expand the problem, it produces a matrix much like Figure 13.3, only bigger. By boundary
value analysis, most of the bugs would occur in a well-selected 50 percent test coverage scenario, or
the first 153,600 tests. Based on what I showed you in this chapter, by using the matrix, we could
probably identify most of the bugs in 92,160 tests, or 30 percent of the matrix-although screen
quadrants are not quite the same as valid month/year combinations. The technique certainly worked
well in this case.

Chapter 14: What Our Analysis Tells Us and What's in
Store in the Near Future

Overview

"So, what did your analysis tell you?" my manager asked.

"That we need to do more testing than we thought," the tester said.

"I expected as much," my manager said, smiling.

Table 14.1 shows the total MITs that were established through path and data analysis covered in Chapters
12 and 13. The actual number is larger than the estimate, as I predicted, but not only for the reason that I
would have expected.

Table 14.1: The Total Tests Identified for the Effort through MITs Analysis

Tester's
Paradise
(Release
2.0)

Total Path Tests Data Tests MINs

 Menu
Option
Paths

Exception
Paths

Program
Paths

MIPs Data
Sets

System MIDs Existing
Tests

Project
Information:

0 0 0 0

Fix For Error
#123

0 0 3 3 7

Fix for Error
#124

0 0 0 0 5

Tester's
Paradise
Main Menu

5 5 0 10

Our Best
System
Simulator

0 0 0 0 65

Message
Data Flow
Checker

0 0 0 0 61

Screen
Comparison
- Pixel
Viewer

0 0 0 0 76

Portable
System
Monitor
(New
Function)

5 5 0 10 3

Specifics
and Options

3 3 0 6

Add-on
Platform
Adapters

3 3 0 6

View
Portable
System
Monitor

2 2 0 4

Display
Portable
System
Monitor

0 0 4 4 3

Order Form 3 3 6 12 3

Method of
Payment
limited to 2
credit cards
(Data Sets)

 0 12

Purchase
Option: Not
Available in
some states
(data)

 0 50

Minimum
Order must
be $30.00
(data)

 0 3

Arrange
Payment

2 2 5 9

Order
Confirmation

1 1 0 2

Support
Packages

3 3 0 6

Return to
Main Menu

1 1 0 2

Cancel 1 1 0 2

Installation is
automatic at
logon

0 0 0 0 1

Totals 29 29 18 76 65 1 66 9

 76 66 9 214

Total all
tests MIPs +
MIDs +
MINs =

151

Existing
Tests

214

Total Tests 365

The MITs path and data analysis yielded 38 more tests than we originally estimated. The real surprise was
that it turned out there were more existing tests than we thought. And after the past performance of the first
version, no one was sure which tests we could drop, safely.

So how good was the estimate? Actually, it was pretty good. Table 14.2 shows the raw worksheet with the
MITs tests added in. Initially, the new numbers in the MITs column make it look like the test effort doubled,
but we were able to contain the effort to the original estimated time line. Take a look at Table 14.2, and I will

explain.

Table 14.2: The Testers Paradise Release 2.0 Sizing Worksheet with MITs

Tester's Paradise (Release 2.0) Estimates MITs

Total Tests for 100% coverage (T) from MITs Totals row on Test Calc.
Sheet

315

MITs Recommended number of scripts 232.00 365.00

MITs Minimum number of scripts from MITs Totals Sheet 208.00

MITs estimate for recommended coverage - all code 74%

MITs estimate for minimum required coverage - all code 66%

Number of existing tests from Version 1 131.00 214.00

Total New Tests identified 113 151

Number of tests to be created 101.00 151

Average number of keystrokes in a test script 50 40

Est. script create time (manual script entry) 20 min. each -> (total new tests
× 20/60) = person-hours total

32.58 50.33

Est Automated replay time total MITs (including validation) 4/60
hrs./script = replay hr./cycle total (For each test environment)

15.47 24.33

Est manual replay time for MITs tests (including validation) × (20/60) =
hours/cycle (For each test environment)

77.33 121.67

LOC Approx. 10,000 C language, 2,000 ASM 12,000
lines

Est. Number of errors (3 errors/100 LOC) = 400 400 errors

Number of code turnovers expected 4

Number of complete test cycles est. 5

Number of test environments 6

Total Number of tests that will be run (against each environment) 4
complete automated cycles = Total MITs × 4

928 1,460

Total Tests - all environments in 5 cycles × Total MITs × 6 environments 6,960 10,950

Pre-Turnover: Analysis planning and design 80 hrs.

Post-Turnover:

Script creation & 1st test cycle (manual build + rerun old suites) = Hours 41.31 64.60

4 Automated Test cycles (time per cycle × 4) × Running concurrently on 6
environments (in Hours)

61.87 97.33

Total: Script run time with automation Running concurrently on 6
environments (1 manual + 4 automated) = weeks to run all tests through 5
cycles on 6 environments

7.22 11.35

Total: Script run time all Manual (5 manual cycles) = weeks for 6
environments - Best Recommendation for automating testing!

58 91.25

Error logs, Status etc. (est. 1 day in 5 for each environment) weeks 1.73 2.72

Total: Unadjusted effort Total Run Time + Bug Reporting (in Weeks) 8.95 14.07

Factor of Safety adjustment = 50% Total adjusted effort (Total effort In
Weeks)

13.43 21.11

We added six test machines so we could run the test suites in half the time. Then we also decided to only

run the tests for Release 1 two times: once at code complete and once after any bug fixes were integrated,
just before shipping the code to production. The strategy worked very well, and we were able to implement
the extra 38 tests for the new code and still fit the test effort into the original 14-week estimate.

The bugs we found in this application were not in the field processors of the user interface. They were
embedded in the interactions of the system, and that leads me to my next topic: what testers will need to test
in the next generation of software.

You are not going to be testing trivial field processors, and no, you won't be able to rerun every test from the
last release. Most development shops are trying to be Agile in order to compete while they keep just enough
of the trappings of the traditional effort so that they can claim their products are commercially hardened,
reliable, viable, and whatever other "ables" marketing requires. If the test effort can't demonstrate its value,
then it is likely to be cut.

Software development is still being treated as a commodity, driven by entrepreneurial forces in the market.
Until we raise our expectations about safety and reliability, we will continue to build software that is not
prepared to survive the events that will probably happen to it.

Testing: The Next Generation

The Internet lowered the cost of communications to virtually nothing and gave us a cheap, globally
accessible distribution system for software, e-commerce, and e-business. However, that was just the
beginning. As more and more services move onto the Net, our expectations are that "everything"
should be doable on the net, and we "need" to be connected more and more of the time. And this is
where testers are going to be needed the most.

Collaboration

New Internet-based collaboration technologies enable projects to spread around the globe. Typically, e-
business initiatives focus on the transaction systems, but the reality is that they are fundamentally
based on people working together. Capabilities such as instant messaging, team rooms, and
application sharing are being integrated within software such that they naturally become a part of the
work environment. When considered in light of the sharp rise in telecommuting to more than 30 million
U.S. workers in 2001, this all points to an impending demand for integrated collaboration tools that are
accessible from both land-based and mobile devices. This demand will undoubtedly drive business
adoption of new expanded wireless application services.

These services will include proactive and interactive features. Proactive features like notification are
called push technology because applications and other users on the network can push messages and
data to the mobile device. Data pull functions allow the user to access private corporate applications
and data, as well as public Web services, and "pull" data from the application or service into their
mobile device, where they can manipulate it.

The dedicated interface and the client/server application will probably be around for a while, but they
will not be the major players. Embedded systems will still be around, but more and more of them will be
network-connected over IP.

Mobile Computing

As I write this, many of you are in the process of moving your first application software to the mobile
Internet. By the time this book is published, most of us in the testing community will be working on
some form of mobile Internet application. A survey of development managers in Fortune 1000
companies conducted in early 2002 shows that, on average, 76 percent of the development budgets
had been allocated to mobile Internet application development projects.

Your first mobile application might be as simple as a Web application that looks up contact phone
numbers and sends the pages to a browser in a mobile phone, or it may be a full-blown mobile client for
an ERP application running in a Pocket PC using an 802.11 Ethernet card or a cell modem for
connectivity. The point is, we are about to enter a new age of computing.

At this time, it is not possible to say whether the Smartphone or the Pocket PC will win the impending
mobile computing race. It doesn't matter if it is one or the other, or both-cost factors and mobility will
drive the masses to the handheld computing device.

There are many examples that involve mobile personnel in industries where field workers need access
to support services on the company intranet. Many of these workers have never used PCs in their jobs,
but the Internet-connected mobile device will give them access to the same applications that have
traditionally been accessible from a PC on the corporate LAN. These industries are expecting to
experience large improvements in speed and efficiency in their service provisioning and customer care.

Back in my Prodigy days, we were limited by slow data transmission rates, small displays, limited
memory, and slow processors. We had limited diagnostics tools and strict performance requirements.
Applications had to become granular, rather than monolithic. They had to be broken into functional bits
so that only the function that was required would be called-not an entire block of logic. The user
interface had to be structured into small bits as well, so it could be downloaded quickly and then
reassembled to run on computers using the small DOS operating system. This didn't seem to fit with
the bigger, faster, smarter, get-DSL-in-your-own-home-and-watch-movies-over-the-Internet way things
have been going recently.

MITs Methods and the Next Generation

Grace Hopper, the inventor of the software compiler, is the person who first popularized the notion of a
computer bug. [1] She is also credited with saying something to the effect that each new tool we create
to improve the way we write code removes whole classes of bugs from existence; simultaneously, it
introduces new and different ones to take their place.

As I have said, most of the biggest quality improvements in software over the past 10 years have been
due to standardization and improved development methods rather than improved quality assurance or
testing. But having said that, when I take stock of where we are today, I have to agree with Grace's
quote. There are new bugs coming at us all the time. So even though we don't need to spend too much
time verifying and validating data field processors today (unless we are concerned that hackers might
attack a weak application that relies on the user interface to prequalify data, rather than validating its
own data), we do need to test. However, the things we are testing are changing from simple computing
logic to complex multisystem integration issues.

The bugs I am seeking today may have very confusing symptoms; they are usually virtually impossible
to reproduce, and they often have far-reaching effects. They can be very hard to diagnose, yet on any
given day, this type of bug can affect thousands of users.

My role as a tester has changed a lot over the past 10 years. But I still use the MITs methods. Ten
years ago I was shocked and appalled when management suggested that I simply fix the bugs that I
was finding and send a report back to development. But today, I routinely fix systems issues and send
the report to the responsible party. I draw the line at changing compiled code; I still won't do that.
However, I am often expected to redesign the user interface based on test results.

Note I still use the same MITs methods even though my testing job has changed a lot.

Today, my role as an integration tester is like the role of a doctor. I am a technician who diagnoses
systemic ailments by observing symptoms and performing tests. Once I have made a diagnosis, I
prescribe a medication or a cure. I may refer the matter to another technician who may be a specialist
in that field. And, the client may choose to ignore my advice.

The Challenges

Now we stand on the threshold of a new era of Internet development: The mobile Internet is upon us
even now. By the end of 2002, there will be 1.5 times more Web-enabled cell phones in the hands of
the public than PCs. People who have never used PCs will begin using mobile Internet applications on
their cell phones, in both their business and personal lives.

In most places, they will be limited by slow data transmission rates over existing cell networks and 320-
pixel-wide displays, as well as limited memory and storage. Applications will be broken into small bits
so that they can be called as needed-in other words, Web services. And new delivery mechanisms will
evolve to ensure that data is delivered to users who will be sometimes connected and sometimes
disconnected from the network.

This new (or resurgent old) architecture requires new (or resurgent old) testing techniques. The
methods, techniques, and tools in this book were developed in just such an environment, and they are
an excellent fit for the needs of testers facing the challenge of testing distributed applications running
on handheld Internet-capable mobile devices.

Testing is going to be challenged again, as it was when PCs were introduced. The new connectivity
and interoperation of these complex systems, where old technology meets new technology, will be a
challenging and stimulating environment for the journeyman tester.

Even if some developers are screaming that no testing is required, there will be those more cautious
and mature among the sheep who will be willing to risk a bit on an evaluation, saying, "We really need
testers on the Internet; people have been writing code and sticking it out there for years without testing
anything." (That quote came from the lead developer in my last eXtreme development project.)

If you can apply MITs methods like the inventory, filled with measurements, you have a good chance of

adding value to your client's product, and your testing will be considered worthwhile.

Note I use MITs no matter what the maturity of the software development is.

It is important that the maturity level of the test effort meet or exceed the maturity level of the software
development. Otherwise, the test effort will be perceived as deficient. There are several such maturity
models for software testing. For organizations using the Software Capability Maturity Model (SW-CMM)
program, there is also a Software Testing Maturity Model (SW-TMM) program that maps testing
activities to development activities.

The methods and metrics that I have discussed in this book fulfill all of the major requirements for a
maturity level 5 testing process. I use them successfully to test development projects that are
functioning on any CMM level. I simply use the best MITs tools, methods, metrics, and techniques for
the job at hand.

I differ with most of the test maturity models in two areas. First, there some organizational issues that I
believe need to remain flexible for each organization-for example, how to control and monitor the
testing process. Second, I differ with most mainstream thinkers in the area of quality assurance. You
can find my views on this topic in Chapter 2, "Maintaining Quality Assurance in Today's Software
Testing Environment."

Overall, I believe that existing maturity models don't demand enough from the testers to make the test
effort worthwhile. I have tried throughout this book to give you insights into how to show management
(and yourself) the value that you add to the product. I do hope that you are able to take advantage of
some of these techniques.

Until next time, Happy Testing.
[1]For the full story, see www.jamesshuggins.com/h/tekl/first_computer_bug.htm.

Appendix A: Answers to Exercises

Chapter 7: How to Build a Test Inventory

Answers to all exercises in Chapter 7 are explained in detail at www.testersparadise.com.

Chapter 11: Path Analysis

Exercise 1

Remember:

Do not count the edges entering or leaving the system.

Figure A.1

Is this a valid logic circuit? Yes, this is a valid logic flow diagram, because all three equations total
the same number of paths and no rules are broken.

Exercise 2

Figure A.2

Is this a valid logic circuit? All three equations do add up to the same number, but this is not a valid
logic flow circuit. Two rules were broken here, and the net effect is that mathematically they cancel
each other out of the calculations. This is a common occurrence in actual testing. The person doing the
logic flow misses the exception clause when he or she is figuring out or explaining how the system
works. A superficial inspection will not find these bugs. Care should be taken when the system is
reviewed to look at each individual node and be sure it complies with the rules.

Rule: You can only have one edge leaving a process.

The p2 process was actually a decision. When this change is made, the equations no longer total to the
same number.

IP = Edges - Nodes + 2

 11 - 8 + 2

= 5

IP = Regions + 1

 4 + 1

=5

IP = Decisions + 1

 5 + l

= 6

Rule: A decision can have more than one edge coming into it, but it is better to use a process
node to collect the edges and feed a single edge into the decision.

Adding a collector or process node and one edge does not add to the total number of paths through the
system. From the equation we can see that these additions cancel each other out.

IP = Edges - Nodes + 2

 12-9 + 2

= 5

Adding one edge and one process node makes the model clearer. If the collector node is necessary for
conceptual clarity, it is probably necessary for programmatic clarity as well. This is one of the first
things we identify in a reengineering effort. Take out the multiple entry points, and funnel all entries
through a collector node. Not only does such a procedure node help structure a system, it is the perfect
place to install a diagnostics trace to aid in testing the system.

Adding a collector node and diagnostics can have other benefits as well. It is not uncommon to
discover that several of the edges that were thought to enter the new collector node are defunct or
erroneous. One of the most productive uses of measurement is to verify actual usage. In one project,
when a collector node and usage counts were added at the entrance to a report writer on a large
system, it was discovered that only about 15 percent of the system reports were ever requested. This
information was used to accurately reapportion the maintenance budget. The result was a better-
balanced workload for support personnel and huge cost savings.

Rule: A decision must have two edges leaving it.

The d2 decision has only one edge leaving it. We will assume that it was really a process. When this
change is made, the totals of all three equations agree:

IP = Edges - Nodes + 2

 8-11+2

= 5

IP = Regions + 1

 4 + 1

= 5

IP = Decisions + 1

 4 + l

=5

Figure A.3

Exercise 3

Figure A.4

Is this a valid logic flow circuit? No. Why not? It has two entrances.

Rule: You can only have one entry point and one exit point in a structured system.

The system is not a valid logic circuit, because it's not a structured system. It requires five linearly
independent paths to cover this system. The calculated value is erroneous.

Exercise 4

Figure A.5

Is this a valid logic flow circuit? Yes.

There are five linearly independent paths possible through this system.

Figure A.6

However, these five paths can be covered in four traversals. If the order in which the nodes are
covered is not important, then Path 4 is not necessary. All the path segments that it covers are covered
in the other four traversals. There are a total of six different ways to traverse the five linearly
independent paths that exist in this system.

Figure A.7

Note Calculating the number of IPs does not tell where the paths are in the system, only how many
exist.

The number of linearly independent paths is not always the minimum number of traversals required to
cover all path segments one time. However, it requires detailed analysis to determine whether or not a
system can be covered in fewer than the calculated number of linearly independent paths. For the
purpose of estimating the number of path traversals that will be traversed as a minimum, the number of
linearly independent paths is still an excellent metric.

Figure A.8

Appendix B: Software Testing Questionnaire,
Survey and Results

If you are going to measure how far you have come, you must first note the position where you started.
In land surveying this is called the benchmark. A surveyor picks a good solid spot, paints an "X" on and
says, "This is the benchmark; its elevation equals 100 feet." It doesn't matter where the benchmark is
as long as it stays put for the duration of the survey. The "100 feet" elevation is arbitrary. It doesn't
matter what its actual elevation is, such as its height above sea level, because everything is being
measured relative to that point.

As the landscape becomes more civilized, durable monuments will be erected to be used as permanent
benchmarks. Their arbitrary elevations and displacements will have been replaced by ones that have
been normalized to fixed standards. In land surveying the standards are sea level, latitude, and
longitude. Once the normalized elevation, latitude, and longitude of a benchmark have been
established, the data is used to produce maps. In this way virtually all of the United States has been
measured.

Making Your Benchmark

The following survey is nine years old. It had been completed by more than 1,350 people before they
were exposed to these methods and metrics. To create your own benchmark, to measure your
knowledge relative to the survey groups, and to measure your progress, complete this questionnaire
before you read the results, and see where you fit.

The Test Questionnaire

Area in which you work:

Mainframe Computer: Both:

Personal Computer: Other: _________________

How long have you worked in this area? Are you:

Management: Not Management:

Do you work primarily on:

Mainframe Computer: Both:

Personal Computer: Other: _________________

Have you participated in any organized software testing classes or workshops?

If so, how long ago?

Please indicate the types of testing you perform or are involved with:

1 = Never, 2 = Rarely, 3 = Infrequently, 4 = Frequently, 5 = Most Frequently

 1 2 3 4 5 1 2 3 4 5

Unit Testing Integration Testing

Function Testing System Testing

User Acceptance
Testing

 Other:______________

 1 2 3 4 5

How many days per week (on average) do you spend involved in
testing?

If less than 1 day per week, please indicate how many hours per week:

__hours.

Please indicate the software metrics that you use in your work:

1 = Never, 2 = Rarely, 3 = Infrequently, 4 = Frequently, 5 = Most Frequently

 1 2 3 4 5 1 2 3 4 5

Lines Of Code
(LOC)

 Cyclomatic Complexity

Halsteads Constant Function Points

% Function
Coverage

 Other:______________

Are you currently using any automation tools in your testing?

Yes No

If you are, please name the tools:

Do you have plans to automate your testing in the next six months?

Yes No

If you do, please indicate what testing you intend to automate:

 1 2 3 4 5 1 2 3 4 5

Unit Testing Integration Testing

Function Testing System Testing

User Acceptance
Testing

 Other:______________

Please indicate the types of test tools you are interested in and your level of interest:

1 = None, 2 = Some, 3 = Medium, 4 = High, 5 = Highest

 1 2 3 4 5 1 2 3 4 5

System Simulators Network Simulators

Capture/Replay
(DOS)

 Capture/Replay (OS/2)

Capture/Replay
(Host)

 Source Analyzer

Testers Workbench Document Generator

Results Tracking Test Script Generator

Test Script
Repository

 Coverage Analysis

System Analyzer Other:______________

Please supply definitions for the following terms: (If you are not familiar with a term, please say so.)

Test: __

Unit Test: __

Statement Testing:__

Branch Testing: __

System Test: __

Integration Test: ___

Black Box Testing: ___

White Box Testing: ___

Function Testing: ___

Structural Testing:__

End-to-end Test: __

User Acceptance Testing (UAT):___

Ad Hoc Testing: ___

The State of Knowledge in Commercial Software Testing

The core material in this book is called The Most Important Tests-MITs-Test Management Method.
MITs has been offered as a seminar since 1991. Beginning in 1992, students were asked to fill out the
written test survey before the class. A voice survey was added in 1993 when the seminar was offered
for the first time in Europe.

The Written Survey

The written survey sought to establish the following:

The respondent's role as practitioner or manager, and the type of group in which the respondent
worked, such as development, test, or operations.

The respondent's level of knowledge of software testing basics and ability to define the test
activities he or she performs regularly.

The type of testing being conducted.

The types of metrics, if any, that are in use.

The level of interest in test automation and the automation tools being used.

The level of competency respondents have in the tasks identified as those they are expected to
perform in their job. (Respondents were asked to identify the types of testing they perform in their
job and then provide definitions of those tasks. Definitions provided by respondents are good
indicators of competency in the tasks identified.)

The Voice Survey

Supplemented the written survey and collected information that students might not want to write on
a survey form.

Determined how long respondents had been involved in testing.

Requested educational background of the respondents.

Determined commonly used metrics for bug tracking and measuring the effectiveness of the test
effort, analysis methods, and attitudes about these metrics.

Results of the Seminar Evaluations

The methods taught in the seminars that have been identified over the years as most useful are listed
according to the respondent's perceptions of their ease of implementation.

Easiest to Implement

Bug Tracking and Bug-Tracking Metrics

The Test Inventory and Test Coverage Metrics

Planning, Path Analysis, and Data Analysis

MITs Ranking and Ranking Criteria

The Test Estimation Worksheet

Test Performance Metrics

More Difficult to Implement

S-Curves

Test Rerun Automation

Automated Test Plan Generation

Results of the Written Test Survey

The results presented here were taken from a sample of 657 written test surveys. In some cases, the
results of surveys administered in the United Kingdom are presented separately from the results of the
U.S.-administered surveys.

Composition of the Respondents

Figure B.1: Composition of respondents by department.

Figure B.2: Composition of respondents, management or nonmanagement.

Figure B.3: Composition of platforms tested by respondents.

"Other systems," noted as 17 percent of the total, includes specialized computer systems and
subsystems such as those found in car braking systems, telephone switching equipment, pagers, and
medical diagnostic equipment.

Education

Of all respondents, 47 percent had some previous training in software testing. For respondents from
the United Kingdom, 60 percent had previous test training-on average, 22 months before the current
seminar. For the respondents from the United States, only 40 percent had received training, generally
within the previous 12 months.

Test Activities

The bar chart in Figure B.4 shows the most and least common test activities as reported by the
respondents. System testing was reported to be the primary focus of most of the respondents, with

function and integration the next most common types of testing performed by the respondents. User
acceptance and unit testing were the focus of the fewest testers responding to the survey.

Figure B.4: Type of testing performed by respondents.

Types of Metrics Used

Very few respondents reported using any metrics at all. Lines of code and percent function coverage
were the two most used metrics cited by survey respondents. Function points, cyclomatic complexity,
and Halstead's metrics were used only rarely (see Figure B.5).

Figure B.5: Test metrics used by respondents.

Types of Formal Methods Used

Few respondents reported using formal methods such as inspection or structured analysis. In fact, the
most commonly cited reason for attending the seminar was to learn formal software testing methods.

Test Automation

Test automation elicited great interest in 1994 and 1995. Of particular interest to 69 percent of all
respondents were automated script replay and test tracking. The majority of respondents (76 percent)
had some experience with automated test tools. Most of the tools listed by respondents were used by
only one respondent. The largest group (29 users) used proprietary tools. Of the most frequently
named commercial offerings, nine reported using Autotester; eight used SQA Test Tools, QA
Automator, or Mercury Interactive's XRunner, and four reported using Microsoft Test.

Knowledge of Common Test Terms

The respondents from the United Kingdom and Europe scored consistently higher than respondents
from the United States in defining the 13 test terms. The average score for the respondents from the
United States ranged from 30 percent to 60 percent correct. The average score for the respondents
from the United Kingdom and Europe ranged from 40 percent to 80 percent correct. The average
scores for the definitions of the most commonly performed types of testing-system test, integration test,
and function test-were markedly lower among respondents who claim to perform these tasks frequently
or most frequently than among respondents who do not claim to perform these tasks. This trend was
consistent across all groups from the United Kingdom, Europe, and the United States. This runs
contrary to the expectation that the people doing the work would also be the most knowledgeable about
the work.

Recognized Survey Deficiencies

The written survey did not ask how long the respondent had been testing or if test coverage, test
effectiveness, and test performance metrics were in use. Nor did it ask specific questions about the
type of bug-tracking metrics being used, such as the bug-find and bug-fix rates. These questions were
added to the seminars in 1994 by way of a voice survey. They were added to the written survey in
1995.

Results of the Voice Survey

The voice survey was conducted during the workshop, with students responding with a show of hands.
These results are general and approximate.

1. How long have you been testing?

2. How many have a Bachelor of Science degree or a Computer Science degree?

3. Does your organization track the bugs you find?

4. Do you rank the bugs by severity?

5. How do you track these bugs?

6. Do you measure bug-find rate and bug-fix rate of the test effort?

7. Do you analyze fault or defect density or error distribution? If so, do you look at the bug
densities by module or by development group to find out where the bugs are?

8. Do you measure the effectiveness, efficiency, or performance of the test effort?

Answers

1. United States-The vast majority were new to testing or had been testing for fewer than two
years.

United Kingdom-More than half of the respondents had been testing for two to four years.

2. United States-Only one or two persons in 50 had a science or engineering degree.

United Kingdom-Typically 50 percent to 70 percent of all students had science degrees.

3. Everyone counted bugs.

4. Ranking schemes were commonly used to identify the severity of each bug. They varied
from two categories such as "Must fix" and "Would like to fix," to five or six categories
ranging from "critical" to "design issue."

5. Some organizations tracked bugs manually, on paper. Most respondents reported using
some sort of database. Most were looking for a better tool.

6. Between 25 percent and 30 percent said "yes." Many students expressed concern that such
analysis would be used negatively by management.

7. Between 25 percent and 30 percent said "yes" to the fault analysis question. When
questioned, it became clear that this analysis is generally accomplished by gut feel, not by
counting the number of bugs or faults discovered. Many students expressed concern that
such analysis would be used negatively by management.

8. Only about 1 person in 100 answered "yes" to this question. Of those, efficiency, or cost per
unit of work, was generally cited as the metric used.

Conclusions Drawn from the Surveys

The respondents who were not actively testing provided the most accurate definitions of the testing
terms. The people performing the testing supplied the poorest definitions of the testing tasks that
they were performing most frequently.

Respondents from the United Kingdom scored much higher than the U.S. respondents in the
definition of testing tasks. They had more science and engineering education than respondents
from the United States. They used more automation tools, but they did not use significantly more
metrics than their counterparts in the United States.

Few respondents reported using formal methods such as inspection or structured analysis,
meaning some documented structured or systematic method of analyzing the test needs of a
system The most commonly cited reason for attending the seminar was to learn some software
testing methods.

The only type of metrics used regularly had to do with counting bugs and ranking them by severity.
Only a small percentage of respondents measured the bug-find rate or the bug-fix rate. No other
metrics were widely used in development or test, even among the best educated and seemingly
most competent testers. It could also be inferred from these results that the companies for which
these testers worked did not have a tradition of measuring their software development or test
processes.

Survey respondents rated the methods and metrics in this book as valuable and doable.

Appendix C: Test Collateral Samples and Templates

The following documents are offered as an aid, and a guide, feel free to copy and paste whatever bits
you can use into your own effort. You can find these and other materials online at
www.testersparadise.com in electronic form.

Sample Memo to Describe the Interview Process

RE: Project [Project Name Here]

System Test Design Project and SME Interview Process

This system test effort differs from integration test and IT-conducted system tests in that it seeks to
verify that critical business functions are operating properly across the entire system. The system test
effort includes function, performance, and load testing. Rather than focusing on the new data flows
through the system, it focuses on day-to-day business functions both before and after the system is
subjected to the new data flows. In theory, very little function will change, but loads on various systems
will be increased.

The test inventory is the tool used in this system test effort to identify the scope of the test effort and
prioritize it based on each inventory item's risk potential. The inventory is intended to be an
enumeration of the software system's testable items that have been identified in the project. The initial
test inventory was prepared from the available project documentation and is included in the master test
plan. Initial priority ratings were applied to each item in the inventory based on the available project
documentation. The inventory also contains the reference to the systems touched by a given item. This
initial test inventory serves as a starting place for the SME interview process.

The interview process is the most efficient method for reviewing, correcting, and enriching the test
inventory and building the system-level process flows. The information gathered during the interviews is
used to correct and refine the test inventory, and to identify data dependencies, as well as
interproject/intersystem dependencies. Currently, two levels of interviews are planned for the system
test planning effort. They are high-level interviews (duration 15 to 30 minutes) and mid-level interviews
(duration 30 to 60 minutes). Interviewees are solicited from each of the project areas: IT, support, and
system groups.

The product of the interview process is a mature prioritized test inventory that encompasses the entire
system and includes the expert input of all the participants. The test inventory and its prioritized test
items are used to build cost, sizing, and scheduling estimates during the planning phases. During the
test effort, the test inventory becomes the test repository and test metrics database.

High-Level Interviews (Duration 15 to 30 minutes)

See the sample questionnaire at the end of this Appendix.

Goals

Identify (for this expert's area):

The project deliverables

Owners of deliverables (mid-level interviewees)

Project dependencies and run requirements

Interproject

Cross-domain

Database and shared files

Business partners' projects

1.

2.

The location of, and access to, the most recent documentation

Get the expert's opinion on the following:

Ranking priorities (at the project level)

Schedules:

Delivery

Testing

2.

Go through the day-in-the-life scenarios to understand and document:

Where do the new projects fit? (If they don't fit, identify the missing scenarios.)

How do the systems fit together? How does the logic flow?

Which steps/systems have not changed and what dependencies exist?

3.

Mid-Level Interviews (Duration 30 to 60 minutes)

Goals

Build and/or review:

The logic flows for the projects and systems

The test inventory

Enumerate and rank additional test items and test steps in the test inventory

Data requirements and dependencies

All systems touched by the project

1.

Get answers to the following questions (as they apply):

What will you or have you tested?

How long did it take?

How many testers did you need?

What do you think we need to test?

2.

Identify additional test sequences.3.

Identify requirements for test tools.4.

Sample Project Inventory and Test Questionnaire for the Interviews

Preliminary Test Inventory

REQUIREMENT TS DESCRIPTION SIZE P CONTACT DATABASE DEPENDENCIES

MGT0033 Fixed Assets &
Project
Accounting

 5

MGT0218 Convert XRR
to XSXT
ORACLE
Purch and Mat

MGT0219 Convert XRR
to XSXT
Accounts
Payable Sys

 5

MGT0145 Budgets-XRR
Acquisition

 5

MGT0034 Interface XRR
to XSXT Oracle
General Ledger

MGT0203 XRR to XSXT
Car Repair
Billing

 3

MGT0030 Convert XRR
to XSXT
Expenditure
Billing Sys

 1

MGT0026 XRR to XSXT
Property
Management

 3

MGT0139 Property Tax 4

TS = Test Sequence; Size, default: KLOC; P = Priority, 1 = Most critical, 5 = Least critical

Test Questionnaire

What test domains will be most important?

Function____ Performance_____ Load___ Stress___ Other___________

Who will perform unit testing?__________________________________

Who will perform module or function testing prior to integration? ______

What functions do we need to
test?

Verification Dependencies (test with... or integrate
with...)

What else?___

__

__

How long will it take you to test it? _______________________________

__

__

How many testers will you use? __________________________________

__

__

What else do I need to know? ____________________________________

__

__

References
AgileAlliance. "Abile Software Development Manifesto." February 13, 2001. Published online at
www.agilemanifesto.org.

Amler, Scott. Agile Modeling. New York: Wiley, 2002.

Beck, Kent and Martin Fowler. Planning eXtreme Programming. Reading, Mass.: Addison-Wesley,
2001.

Beiman, James M., and Janet L. Schultz. "Estimating the Number of Test Cases Required to
Satisfy the All-du-paths Testing Criteria." Proceedings of the COMPASS 90 conference. 1989 ACM
089791-342-6/89/0012/0179.

Beizer, Boris. Software Testing Techniques. New York: Van Nostrand Reinhold, 1983.

Beizer, Boris. Software System Testing and Quality Assurance. New York: Van Nostrand Reinhold,
1984.

Beizer, Boris. Black-Box Testing: Techniques for Functional Testing of Software and Systems. New
York: Wiley, 1995.

Berge, C. Graphs and Hypergraphs, Amsterdam, The Netherlands: North-Holland, 1973.

Bergman, Mark. "The Evolution of Software Testing Automation." Proceedings of the 8th
International Conference on Testing Computer Software, June 19, 1991.

Boehm, B. W., and R. W. Wolverton. Practical Strategies for Developing Large Software Systems.
Reading, Mass.: Addison-Wesley, 1975.

Boehm, Barry, and D. Port. "Balancing Discipline and Flexibility with the Spiral Model and MBSDE."
STSC CrossTalk, December 2001, pp. 23-30. Published online at
www.stsc.hill.af.mil/crosstalk/2001/dec/boehm.pdf.

Boehm, Barry. "Get Ready for Agile Methods, with Care." IEEE Computer, January 2002.

Boehm, Barry W. "A Spiral Model of Software Development and Enhancement," Proceedings of
IEEE Second Software Process Workshop, ACM Software Engineering Notes, March 1986 and
May 1988.

Brown, J. R., and M. Lipow. The Quantitative Measurement of Software Safety and Reliability.
TRW Report SDP 1176, 1973.

Cockburn, Alistair. Agile Software Development, Reading, Mass.: Addison-Wesley, 2001.

Crosby, Philip B. Quality Is Free, Mentor, 1980.

DSDM Consortium. Dynamic Systems Development Method. Version 3. United Kingdom. Published
online at www.dsdm.org.

Farr, W. H. "A Survey of Software Reliability Modeling and Estimation." Naval Surface Warfare
Center Technical Report, NSWC TR 82-171, June 1983.

Gilb, Tom. Principles of Software Engineering Management. Reading, Mass.: Addison-Wesley,
1988.

Gilb, Tom, and Dorothy Graham. Software Inspection. Reading, Mass.: Addison-Wesley, 1993.

Goodenough, J. B. Research Directions in Software Technology. Cambridge, Mass.: MIT Press,
1979.

Gordon, Geoffrey. System Simulation. Upper Saddle River, N.J.: Prentice Hall, 1978.

Halstead, Maurice H. "Software Science Measures." Published in Elements of Software Science,
1977.

Halstead, Maurice H. Elements of Software Science, Operating, and Programming Systems
Series. Volume 7. New York, NY: Elsevier, 1977.

Highsmith, Jim. Agile Software Development Ecosystems. Reading, Mass.: Addison-Wesley, 2002.

Howden, William E. "Validation Programs without Specifications." Proceedings of COMPASS 90,
1989 ACM 089791-342-6-89/0002.

Humphrey, Watts. A Discipline for Software Engineering, Reading, Mass.: Addison-Wesley, 1997.

Hutcheson, Marnie. "Production Problems in an Application Running on the Prodigy Service."
Proceedings of the Fifth Annual Compass Conference on Computer Assurance, 1990, IEEE,
Washington, DC, Section 3.

Hutcheson, Marnie. "Using S-Curves to Measure Test Progress." Proceedings of the ASM Metrics
Conference, La Jolla, California, November 1994.

Hutcheson, Marnie. "Testing of a Shrink-Wrapped (RAD) Product." Proceedings of Eurostar '94,
1994 1.3.

Hutcheson, Marnie. "The Most Important Tests (MITs) Test Management Method." Prodigy
Services Co. Internal Publication, 1992 Proceeding of UNICOM Seminars. Fall 1993.

The Institute of Electrical and Electronics Engineers. IEEE Standard Dictionary of Measures to
Produce Reliable Software. The Institute of Electrical and Electronics Engineers. April 30, 1989.

Johnson, David E.,John L. Hilburn, and Johnny R. Johnson. Basic Electric Circuit Analysis. 2d
Edition. Upper Saddle River, N.J.: Prentice Hall, 1984.

Jones, Capers. Applied Software Measurement: Assuring Productivity and Quality. New York:
McGraw-Hill, 1991.

Jones, Capers. Software Quality for 1995: What Works and What Doesn't? Software Productivity
Research, Inc., 1994.

Jones, Capers. Function Point Metrics and Civilian Best Practices. Software Productivity Research,
Inc., 1995.

Kaner, Cem,Jack Falk, and Hung Quoc Nguyen. Testing Computer Software, 2d Edition. New
York: Van Nostrand Reinhold, 1993.

Kitchenham, Barbara. Experimentation in Software Engineering. Systems/ Software, Inc., 1990.

Lauterback, L., and W. Randall. Experimental Evaluation of Six Test Techniques, Research
Triangle Institute, P.O. Box 12194, Research Triangle Park, NC 27709, 1991.

McCabe, Thomas J., and Charles W. Butler. "Design Complexity Measurement and Testing."
Communications of the ACM. December 1989, Volume 32, Number 12.

McCabe, Thomas, J. "Structured Testing: A Software Testing Methodology Using the Cyclomatic
Complexity Metric." Computer Science and Technology, NBS Special Publication 500-99, U.S.
Department of Commerce, December 1992.

Microsoft Corporation. Microsoft Excel Developer's Kit. 2d Edition. Redmond, Wash.: Microsoft
Press.

Microsoft Corporation. The Windows Interface: An Application Design Guide. Redmond, Wash.:
Microsoft Press, 1992.

Microsoft Corporation, Microsoft Word Developer's Kit. 3d Edition. Redmond, Wash.: Microsoft
Press, 1995.

Myers, Glenford. The Art of Software Testing. New York: Wiley, 1978.

Ostrand, Thomas J., and Marc J. Balcer. "The Category-Partition Method for Specifying and
Generating Functional Tests," Communications of the ACM. June 1988, Volume 31, Number 6.

Paulk, Mark C.,Charles V. Weber,Bill Curtis, and Mary Beth Chrissis. The Capability Maturity
Model: Guidelines for Improving the Software Process. Reading, Mass.: Addison-Wesley, 1995.

Rowland, John H., and Yu Zuyuan. "Experimental Comparison of Three System Test Strategies"
Preliminary Report. 1989, ACM 089791- 342-6/89/0012/0141.

Shortley, George, and Dudley Williams. Elements of Physics, 5th Edition. Upper Saddle River, N.J.:
Prentice Hall, Inc., 1971.

Silver, Bill. "Application of Software Test Measurement." Software Quality World. June 18, 1991.

Treinish, L. A. "Visualization Techniques for Correlative Data Analysis in the Earth and Space
Sciences." Animation and Scientific Visualization: Tools and Applications. San Diego: Academic
Press/Harcourt Brace & Company, 1993, pp. 193-204.

Webster's New World Dictionary of the American Language, Second College Edition. Upper Saddle
River, N.J.: Prentice Hall, 1984.

Weyuker, Elaine J. "The Evaluation of Program-Based Software Test Data Adequacy Criteria."
Communications of the ACM. June 1988, Volume 31, Number 6.

Yamada, S.M. Ohba, and S. Osaki. "S-Shaped Reliability Growth Modeling for Software Error
Detection." IEEE Transactions on Reliability. BOL. R-32, No. 5, December 1983, pp. 475-478.

Yourdon, Edward, Decline and Fall of the American Programmer. Upper Saddle River, N.J.:
Prentice Hall, 1993.

Glossary

A-C

ad hoc

For this specific purpose; for a special case only, without general application [an ad hoc
committee].

adjunct processor

A secondary CPU that is in communication with a primary CPU. This secondary CPU or
processor handles a specific task or function. Typically, the primary CPU sends traffic to
the adjunct processor to be processed. Also called an attached processor.

Agile development methods

See AgileAlliance. "Agile Software Development Manifesto." February 13, 2001.
www.agilemanifesto.org

art

1. The human ability to make things; creativity of human beings as distinguished from the
world of nature. 2. Skill; craftsmanship. 3. Any specific skill or its application (the art of
making friends). 4. Any craft, trade, or profession or its principles. 5. Making or doing of
things that display form, beauty, and unusual perception; art includes painting, sculpture,
architecture, music, literature, drama, the dance, etc. 6. Artful or cunning. 7. Sly or cunning
trick; wile. (Webster's New World Dictionary of the American Language, Second College
Edition, Prentice Hall, 1984)

assumption

1. The act of assuming, a taking upon oneself, taking over, or taking for granted. 2.
Anything taken for granted; supposition. 3. Presumption. (Webster's New World Dictionary
of the American Language, Second College Edition, Prentice Hall, 1984)

basis suite

A highly optimized test suite used to establish the baseline behavior of a system.

See also diagnostic suite.

behavioral testing

Tests that verify the output is correct for a given input, without verifying the process that
produced the output; data testing.

benchmark

1. A surveyor's mark made on a permanent landmark of known position and altitude; it is
used as a reference point in determining other altitudes. 2. A standard or point of reference
in measuring or judging quality, value, and so on. (Webster's New World Dictionary of the
American Language, Second College Edition, Prentice Hall, 1984)

bias

Error we introduce by having knowledge and therefore expectations of a system.

black box testing

See behavioral testing.

bottom-up testing

Each module or component is first tested alone, and then the modules are combined a few
at a time and tested with simulators used in place of components that are necessary but
missing.

See also unit test.

brainstorming

Using group synergy to think up ideas.

branch

In program logic, a branch refers to a decision in the code, usually a conditional branch
such as an if statement, but it could also be an unconditional branch like a goto statement.

branch coverage

The count of the minimum number of paths required to exercise both branches of each
decision node in the system. Best known in unit testing as the number of logic branches in
the source code (such as the number of if statements multiplied by 2).

branch test

A test that exercises a logic branch in a program. Traditionally part of unit testing.

calculate

To determine by using mathematics, to compute.

Capability Maturity Model (CMM)

Scheme for measuring the levels of process maturity in a company. Developed at Carnegie
Mellon University.

client/server

A name given to the architecture that gives the user or client access to specific data
through a server.

code generator

A software application that generates program source code.

code inspections

A formal process where the source code is inspected for defects.

coding

The act of writing a software program. Program language statements are called code. This
is an old term from precompiler days when programmers translated programming
instructions directly into machine language.

CPU

Central processing unit.

cyclomatic complexity

A term used interchangeably with the cyclomatic number.

cyclomatic number

The minimum number of linearly independent paths through a structured system.

D-E

data

Things known or assumed; facts or figures from which conclusions can be inferred;
information.

data analysis

The process of analyzing data.

data dependent

Something that is dependent on the value of a given piece of information. For example,
which branch of an if statement will be selected is usually dependent on the information
being processed at that specific time.

database

A large collection of data in a computer, organized so that it can be expanded, updated,
and retrieved rapidly for various uses.

debug

Given a program that has a bug, to track the problem down in the source code.

decisions

A branching node with multiple edges entering and one edge leaving; decisions can
contain processes; in this text, for the purposes of clarity, decisions will be modeled with
only one edge entering.

deformation

The changing of form or shape induced by stress.

design

1. To make preliminary sketches of; sketch a pattern or outline for; plan. 2. To plan and
carry out, especially by artistic arrangement or in a skillful way. 3. To form (plans, etc.) in
the mind; contrive. 4. To plan to do; purpose; intend. (Webster's New World Dictionary of
the American Language, Second College Edition, Prentice Hall, 1984)

diagnose

To ascertain why a system responds to a set of stimuli the way it does.

diagnostic suite

A highly optimized test suite used to establish the current behavior of a system, used to
isolate the site (or source) of a failure.

document inspection

A formal process where the project documentation is inspected for defects.

edges

In logic flow diagrams, these are lines that connect nodes on the logic flow map.

effectiveness

1. Having an effect; producing a result. 2. Producing a definite or desired result; efficient.
3. In effect; operative; active. 4. Actual, not merely potential or theoretical. 5. Making a
striking impression; impressive. 6. Equipped and ready for combat. (Webster's New World
Dictionary of the American Language, Second College Edition, Prentice Hall, 1984)

efficiency

1.Ability to produce a desired effect, product, and so on with a minimum of effort, expense,
or waste; quality or fact of being efficient. 2. The ratio of effective work to the energy

expended in producing it, as of a machine; output divided by input. (Webster's New World
Dictionary of the American Language, Second College Edition, Prentice Hall, 1984)

empirically

Determined by trial or experiment.

end-to-end testing

Type of testing where the entire system is tested-that is, from end-to-end.

engineering

1. (a) The science concerned with putting scientific knowledge to practical uses. (b) The
planning, designing, construction, or management of machinery, roads, bridges, buildings,
and so on. 2. The act of maneuvering or managing. (Webster's New World Dictionary of
the American Language, Second College Edition, Prentice Hall, 1984)

environment catalog

A catalog or list of the elements of a given environment, usually includes description and
specifications.

excellence

The fact or condition of excelling; of superiority; surpassing goodness or merit, and so on.

expected response

A standard against which a test is compared.

experimentation

The act of conducting experiments.

expert testers

Testers who are experts in their areas.

F-I

feature richness

A measure of the abundance and quality of the features offered by a product.

formal

Following a set of prescribed or fixed procedures.

fourth-generation languages (4GL)

4GLs are characterized by natural language-like commands and/or application generators.
4GLs are typically easier to use than traditional procedural languages. They can be
employed by end users to develop applications quickly.

function paths

The logic paths that are taken when a program function is executed.

function points

A synthetic software metric that is composed of the weighted totals of inputs, outputs,
inquiries, logical files or user data groups, and interfaces belonging to an application.

function test

A test of program functions normally conducted from the user interface.

fundamental metric

A measurement of a physical quantity, where what is measured is the name of the metric,
for example, errors per 100 lines of code.

graphical user interface (GUI)

Computer user interface where the user can manipulate objects to accomplish tasks.

IEEE

Institute of Electrical and Electronics Engineering.

incremental delivery

A strategy for delivering a system to the users in increments. Each increment delivered
adds function to the previous product. Such systems are generally delivered using
incremental development or modular development techniques.

incremental development

Modules that implement function to be delivered are developed and unit tested; then they
are assembled, integrated into the existing system, and tested as they become available.
The system is stabilized after each addition. Theoretically, this means that there is always
a stable version ready to be shipped.

independent function paths

The discrete logical paths that can be executed through a function in an application or a
system where each one is independent from the others.

innovate

Renew, alter, introduce new methods, devices, and so on; to bring in as an innovation.

inspection

The process of examining something carefully and in detail.

integration test

This is the process where systems are built. Units that make up a system are combined,
and the interfaces and data flow within the system are tested. Units are usually added one

at a time, and the system's stability is reestablished before the next unit is added.

integrator

One who integrates.

integrity

The quality or state of being complete; unbroken condition; wholeness.

invent

1. To come upon, meet, or discover. 2. To think up; devise or fabricate in the mind [to
invent excuses]. 3. To think out or produce [a new device process, etc.]; originate, as by
experiment; devise for the first time. (Webster's New World Dictionary of the American
Language, Second College Edition, Prentice Hall, 1984)

inventory

A detailed list.

K-P

keytrap tool

A software test tool that captures and saves the keystrokes typed by the user. Also called
capture/replay and capture/playback.

linear independence

A line that is independent of other lines. For system traversals, this means that each
linearly independent path through the system must traverse some unique path segment
that is not traversed by any other traversal through the system.

lines of code

The count of the lines of program code in a software module or system.

load testing

Testing the load-bearing ability of a system. For example, verifying that the system can
process the required number of transactions per time period.

logic flow map

Graphic depiction of the logic paths through a system, or some function that is modeled as
a system.

logic schematics

A logic scheme, plan, or diagram.

magnitude of a physical quantity

Specified by a number and a unit, such as bugs per thousand lines of code or per minutes
of test.

management

The act, art, or manner of managing, or handling, controlling, directing, and so on.

measure

"The act or process of determining extent, dimensions, and so on; especially as
determined by a standard," (according to Websters New World Dictionary). The IEEE
definition is "A quantitative assessment of the degree to which a software product or
process possesses a given attribute." [IEEE043098]

menu

A program element that offers the user a number of choices; menus do not involve data
entry.

metric

A measure.

metric system

A set or system of measures.

Most Important Tests (MITS)

The tests most likely to be of interest on the basis of probable importance and risk of
failure.

node

From the Latin nodus, meaning knot. A dilemma or complication; a point of concentration.
In logic flow mapping, both processes and decisions are nodes.

object-oriented languages

A programming system where program functions and utilities are precompiled into objects
that have distinct properties and behaviors.

paper documentation

Documentation printed on paper.

path

A track or way worn by footsteps; also a line of movement or course taken; any traversal
through a system.

path analysis

Examining and enumerating the paths through a program or system.

path-dependent function

A program traversal that follows a particular path regardless of the current data.

percent function coverage

The percent of all functions that are being tested.

performance

1. The act of performing; execution, accomplishment, fulfillment, and so on. 2. Operation or
functioning, usually with regard to effectiveness, as of a machine. 3. Something done or
performed; deed or feat. 4. (a) A formal exhibition or presentation before an audience, as a
play, musical program, show, and so on. (b) One's part in this. (Webster's New World
Dictionary of the American Language, Second College Edition, Prentice Hall, 1984)

performance testing

See load testing.

physical quantity

The description of the operational procedure for measuring the quantity.

plan-driven

Term coined by Barry Boehm in his article, "Get Ready for Agile Methods, with Care" to
describe traditional waterfall-style development methods. See the "References."

process

A continuing development involving many changes.

processes

In logic flow mapping, a process is a collector node with multiple edges entering and one
edge leaving; a process node can represent one program statement or an entire software
system, as long as the contents are consistent throughout the logic flow diagram.

production system monitoring

The act of watching a production system; the object is to detect anomalies or failures as
they occur.

programmatic paths

The logic flow through the code statements in a program.

proprietary

Privately owned and operated. Held under patent, trademark, or copyright by a private
person or company.

Q-S

quality

The degree of excellence that a thing possesses. The degree of conformance to a
standard.

quality assurance

According to the British Standard 4778, this standard cites all those planned and
systematic actions necessary to provide adequate confidence that a product or service will
satisfy given requirements for quality.

quality control

According to the British Standard 4778, the operational techniques and activities that are
used to fulfill requirements for quality.

random

Without specific order.

rank

An orderly arrangement; a relative position, usually in a scale classifying persons or things.

rapid application development (RAD)

A development process that evolves a product through multiple trial-and-error cycles.

regions

Any area that is completely surrounded by edges and processes.

regression test

Retesting something that has been tested previously. Usually conducted after some part of
the system has been changed. Regressing; going back, returning.

review

To look at or go over again.

science

1. Systematized knowledge derived from observation, study, and experimentation carried
on in order to determine the nature and principles of what is being studied. 2. A branch of
knowledge or study, especially one concerned with establishing and systematizing facts,
principles, and methods, as by experiments and hypotheses. 3. (a) The systematized
knowledge of nature and the physical world. (b) Any branch of this. 4. Skill or technique
based upon systematized training. (Webster's New World Dictionary of the American
Language, Second College Edition, Prentice Hall, 1984)

scientific method

The systematic attempt to construct theories that correlate wide groups of observed facts
and are capable of predicting the results of future observations. Such theories are tested
by controlled experimentation and are accepted only so long as they are consistent with all
observed facts.

severity

The quality or condition of being severe; strictness; harshness.

software application

A computer program that performs some set of functions.

Software Capability Maturity Model (SW-CMM)

A scheme for measuring the levels of process maturity in a company. Developed at

Carnegie Mellon University, Software Engineering Institute. The Capability Maturity Model
uses a conceptual framework based on industry best practices to assess the process
maturity, capability, and performance of a software development organization.

source code

In programming, the actual statements of programming language in a program.

spaghetti code

Referring to poorly constructed, disorganized, and unstructured source code.

statement

The thing stated; account; declaration. In programming, a single line of program code, a
single program action.

statement coverage

A method of path counting that counts the minimum number of paths required to walk
through each statement in the source code.

statement test

Testing statements in a software program at the source code level.

static code analyzer

A software tool that analyzes the program source code, in an uncompiled state. As
opposed to dynamic code analyzers, which analyze the activity of code while it is being
run.

structural test

A test that verifies the structural integrity of a set or system of program elements.

structured system

A system or subsystem that has only one entry point and one exit point.

system

A set or arrangement of things so related or connected so as to form a unity or organic
whole. A set of decisions and processes that as a group have one entry point and one exit
point. A group of units that can interact, as well as act independently.

system test

This term is often used interchangeably with integration test, but it really refers to testing a
system that is built. The functions of the complete system are verified.

T-U

technique

The method or procedure (with reference to practical or formal details), or way of using
basic skills, in rendering an artistic work or carrying out a scientific or mechanical
operation.

test

Ascertain the response of a system to stimuli and compare that response to a standard.
Evaluate the quality of the response with respect to the standard. Given some software
and a list of the functions it is supposed to perform, find out if it performs these functions
as they are described. Additionally, find out if it does other things that are not described.
(Validate and verify.)

test 1

(IEEE) A set of one or more test cases.

test case

A condition to be tested that includes its own identification and the expected response.
Sometimes used interchangeably with test script.

test coverage

The percentage of everything that could be tested that was actually tested.

test effort

Process by which testers produce their product, involving developing and evaluating a
software system by conducting tests and getting bugs removed.

test inspection

A formal process where the tests are inspected for defects.

test inventory

The complete enumeration of all known tests; path, data, module, design, system, and so
on.

test script

A collection of tests or activities that are performed in sequence. Used interchangeably
with test case.

test set

Term used to describe a group of tests.

See also test suite.

See also test inventory.

test suite

A group of tests run sequentially.

testing

(IEEE) The process of analyzing a software item to detect the differences between existing
and required conditions (that is, bugs) and to evaluate the features of the software item.

theoretical

Limited to or based on theory.

theory

1. A mental viewing; contemplation. 2. A speculative idea or plan as to how something

might be done. 3. A systematic statement of principles involved. 4. A formulation of
apparent relationships or underlying principles of certain observed phenomena that has
been verified to some degree. 5. That branch of an art or science consisting in a
knowledge of its principles and methods rather than in its practice; pure, as opposed to
applied, science, and so on. 6. Popularly, a mere conjecture, or guess. (Webster's New
World Dictionary of the American Language, Second College Edition, Prentice Hall, 1984)

top-down testing

A testing process that first assembles a system and then tests the entire system at once
from the user's perspective.

total independent paths (TIP)

Total number of linearly independent paths being considered.

Underwriters Laboratory (UL)

An establishment in the United States licensed to certify that electronic products meet
established safety standards.

uniformity

State, quality, or instance of being uniform.

unit

A discrete, logical set of function(s). This can be a single small program.

unit test

To test a program unit, a separately compiled module, an object, or a group of closely
related modules.

universal description discovery and integration (UDDI)

A cross-industry effort driven by major platform and software providers, as well as
marketplace operators and e-business leaders within the OASIS standards consortium.
UDDI creates a standard interoperable platform that enables companies and applications
to quickly, easily, and dynamically find and use Web services over the Internet.
http://www.uddi.org/

unreproducible bug

A bug that cannot be reproduced by following the same steps that produced it originally.

user acceptance test (UAT)

Tests performed by the user to determine if the system is acceptable.

V-W

validate

To confirm the validity of.

validation

The act of confirming; to declare valid.

validity

The state, quality, or fact of being valid (strong, powerful, properly executed) in law or in
argument, proof, authority, and so on.

verification

Verifying or being verified; establishment or confirmation of the truth or accuracy of a fact,
theory, and so on.

verify

1. To prove to be true by demonstration, evidence, or testimony; confirm or substantiate. 2.
To test or check the accuracy or correctness of, as by investigation, comparison with a
standard, or reference to the facts.

versioning

A process used by the first version.

white box testing

Testing that examines and verifies the process by which program functions are carried out;
path testing.

working hypothesis

To provide a basis for further investigation, argument, and so on of an unproved theory.

WYSIWYG

What you see is what you get.

Index

A
accountability, 51-55

activities, quality assurance and, 33

ad hoc
defined, 377
random and, 260

ad hoc testing, defined, 260

Adaptive Software Development (ASD), 13

adjunct processor, 377

administration time, sizing worksheet, 248

adversarial approach versus team approach, 57-60

aggressive behavior, adversarial approach and, 59

Agile development methods, 377
test efforts, turnaround, 88
values, 87

Agile methodologies, 13

algorithm, defined, 258

analytical methods, test inventory and, 142
data analysis, 144
environment catalog, 145
inspections, 143
path analysis, 144
reviews, 143-144
usage statistics, 145-147
user profiles, 145-147
walk-throughs, 144

answers to exercises, 345-354

application base function, Web project inventory, 160

application function paths, 296

applied path analysis, 287-289
data dependencies, 310-311
divide and conquer approach, 294-295
game show analogy, 289
mapping, 290-293
path dependencies, 310-311
paths not counted, 295-296
test estimates, building, 296-297

logic flow maps, 302-308
menu map, 297
menu options, 297-302
recording paths, 308-309

applied risk analysis, 233-235
criteria for selecting tests, 252-255
inventory, 235

bug fixes, 250-252
contract to test, 252
MITs totals worksheet, 239-242
sizing worksheet, 242-249
test effort negotiation, 249-250
test estimation process, 236-239

ranking worksheet, 234

argument, persuasion and, 59-60

art
defined, 377
and engineering, balancing, 60-66
myths about, 48
pure art, 50

artists, discipline and, 48

ASD (Adaptive Software Development), 13

assumptions
defined, 378
MITs method, 79
publishing, risk analysis and, 209
quality assurance faulty assumptions, 28-32
recognizing, 53
sizing worksheet, 248
stating, engineering and, 52-54
types of assumptions, 54
unit testing, 66

automation
inventory, 183-186
record keeping, quality assurance and, 37-38
sizing worksheet, 245, 247-248
test tools, 185

Index

B
balancing creativity and method, 50

basis suite, 378

behavioral testing
data analysis and, 144
defined, 378
inventory building and, 135

benchmark
defined, 378
land surveying example, 355
test questionnaire and, 356

bias
defined, 378
top-down testing and, 67-68

big bang method, 176

billing system
examples, 93-96
inventory, structured RAD project, 153-154

BizTalk server (Microsoft), 39-41

black box testing
data analysis and, 144
defined, 378
inventory building and, 135

blue book, inventory, 183-184

bottom-up testing
defined, 378
versus top-down, 65-66

brainstorming
defined, 378
nonanalytical methods, test inventory and, 147-148

branch, 378
branch test, 378
coverage

defined, 378
path analysis and, 267-268

broad focused integration testing, 67-68

B2B (business-to-business) standards, 19

bugs
assumptions, 54
classification of type, 113
composition, 116-117
concentration, 115-116
density per unit, 115-116
efficiency measure and, 137
find rates, 114
fix rate, 117-118
fixes

applied risk analysis, inventory and, 250-252
Web project inventory, 160

fundamental metrics and, 110
Hopper, Grace and, 340-341

measurement and, 112-118
number found, 113-115
paper documentation and, 34
reports, planning and, 128
reproducing, 118
severity

composition, 117
measure, 112

unreproducible, 389

BVA (boundary value analysis)
data sets, building from bottom up, 326-328
example, 316-320
hidden boundaries, 329-330
matrix data reduction, 321

data set tests, 322-323
data set truth tables, 323-326

Index

C
calculate, defined, 378

Capability Maturity Model. See CMM

case statements, path analysis and, 264-265
branch coverage, 267-268
linear independence, 265-267
statement coverage, 267

case studies, risk analysis, 401(k) Web project, 226-230

cataloging, environment catalog, 145

checking others' work, factors of safety and, 57

classification of bugs, 113

client/server, 381

CMM (Capability Maturity Model), 378

code generator, 381

code inspections, 381

code turnovers, sizing worksheet, 246

coding, 381

collaboration
documentation and, 38-39
future of testing and, 338-339
HTML documents, 191
SharePoint Team Services, 191
Web-based collaborative interviews, 166
Web sites, quality control and, 37-38

color, growth in market, 31

commercial software, factors of safety, 55

competition, elimination by market forces, 36

composition of bugs, 116-117

conclusions from surveys, 367

constant refinement, quality and, 35

constraints, sizing worksheet, 248

contracts to test
applied risk analysis and, 252
versus test plans, 141

cost
efficiency and, 136
fundamental metrics and, 110, 111

bug find rate, 113-114
measuring, 122
of not testing, 124
release comparison table, 137

coverage, tests, 119

CPU (central processing unit), 381

craftspersons
versus engineers, 107
Stradivari, Antonio, 132

creativity, balancing with method, 50

credibility of testing, 17

customer satisfaction, quality and, 35

cXML standards, 19

cyclomatic complexity, 381

cyclomatic number, 381

Index

D
data

defined, 381
exercising, risk criteria and, 254

data analysis
analytical methods, test inventory and, 144
BVA (boundary value analysis)

example, 316-320
matrix data reduction, 321-326

defined, 381
hidden boundaries, 329-330
techniques, 313

input testing, 314-316
Web services, 330-332

data dependencies, 310-311

data dependent, defined, 381

data-dependent paths, data analysis and, 314-315

data sets (BVA)
building from bottom up, 326-328
tests, matrix data reduction, 322-323
truth tables, matrix data reduction, 323-326

database, 381

debugging, 381. See also bugs

decisions, 381

deformation, 381

density per unit, bugs, 115-116

derived units, measurement and, 108

design
defined, 381
quality requirements and, 30

desktop computers, testing history, 5-7

development, test group and, 68-70

diagnose, defined, 382

diagnostic suite, 382

diagnostics, planning and, 128

discipline, artists and, 48

divide and conquer approach, path analysis, 294-295
downfalls, 295-296

document generation system, examples, 96-100

document inspection, 382

documentation
collaboration and, 38-39
creation, 38-39
maintenance, 38-39
modeling tools, 39-42
orchestration, 39
quality assurance and, 33
review, 38-39

sizing worksheet, 248
system description, 39-42
technique improvement, quality assurance and, 38-42

documents, inventories in, 189-190
electronic copies, 198
high-function Web sites, 200-203
Outline View, 190-193
rekeying data, 200
spreadsheets, 198-200
tables, 196-198
TOC (table of contents), 193-195

Doom video game, 289

DSDM (Dynamic Systems Development Method), 13
billing system, example, 94

Index

E
eclectic approach to integration and testing, 60-66

edges, 382

effectiveness, defined, 382

efficiency
bugs and, 137
cost and, 136
defined, 382
equation for, 136
release comparison table, 137

electronic copies of inventory documents, 198

empirically, defined, 382

EN standards, 52

end-to-end testing
defined, 382
inventory building and, 134

engineering
accountability and, 51-55
and art, balancing, 60-66
assumptions, stating, 52-54
defined, 51, 382
engineering approach, 51-60
methods, stating, 52
performance and, 51-55
practice of, 51
professional engineers, 51
safety, 55

engineers, versus craftspersons, 107

entrepreneurial pressures not to test, 14-15

environment catalog
analytical methods and, 145
defined, 382
Web project inventory, 160

environment description matrix, 165

environments, assumptions, 54

equations for calculating paths, 277-280

error messages, data input testing, 315-316

estimates
factors of safety and, 56
historical data and, 135-139
sizing worksheet, 246

evaluation, IEEE testing defined and, 13

examples. See also samples
integration, 100-102
interview process

example questions, 170-171
information gathered, 175-178

project management, risk analysis and, 214-217
test efforts, 90-102

excellence, defined, 382

exercises, answers, 345-354

expected response
defined, 382
IEEE test defined, 134

expendable testers, 167

experimentation, 382

expert testers
defined, 383
nonanalytical methods, test inventory and, 148

external review, 65

eXtreme Programming (XP), 13
thumbnail sketch, 97

Index

F
face-to-face interviews, 166

factors of safety, 55
adversarial approach versus team approach, 57-60
checking others' work, 57
determination, 56-60
estimates and, 56
second opinions, 57

facts, science and, 49

failures
status tracking, planning and, 128
test effectiveness and, 121

feature bloat, 29

feature richness
defined, 383
perceived quality and, 48

field validation tests, 319-320

financial climate, current, 8-11

fix rate, bugs, 117-118

fixes, Internet distribution, 7

forensics, risk ranking and, 225

formal, defined, 383

formal methods, pressures to avoid, 15

4GL (fourth-generation languages), 383

401(k) Web project, risk analysis case study, 226-230

fourth-generation languages. See 4GL (fourth-generation languages)

free-for-all RAD/Agile test effort, 89

function paths, 383

function points, 383

function test, 383

function tester, time needed, 135

functions, exercising, risk criteria and, 253

fundamental metrics, 107-109
bugs and, 110
cost and, 110, 111
defined, 383
size, 109-112
tests and, 110, 111-112
time and, 110-111

further reading, 375-378

future of testing
challenges, 341-343
collaboration, 338-339
MITs and, 340-341
mobile computing, 339-340

future team, 98

Index

G
game show analogy, applied path analysis, 289

graphical user interface. See GUI (graphical user interface)

graphics, growth in market, 31

grocery shopping analogy, 139-140

GUI (graphical user interface)
data input testing

data-dependent paths, 314-315
error messages, 315-316

defined, 383

Index

H
hammer/nail analogy, 27

high-function Web sites, test inventory documents, 200-203

high-level interviews, 370-371
outline, 168-169

historical data, estimating effort and, 135-139

history of testing
methods and, 12
1980s, 4-5
1990s, 5-7
Web, 7-8

Hopper, Grace, 340-341

HTML documents, collaboration and, 191

hunches approach to development, 45-47

Index

I
I-Feel-Lucky approach, 45-47

identifying tests, MITs and, 80

IEEE (Institute of Electrical and Electronics Engineering)
defined, 383
test, definition of, 133
testing defined, 13

incremental delivery, 383

incremental development, 383

independent function paths, 383

independent test groups, 68

innovate, defined, 383

input testing, GUI
data-dependent paths, 314-315
error messages, 315-316

inspection
analytical methods, inventory building, 143
current testing and, 3
defined, 383

integration, 17
eclectic approach, 60-66
example system, 100-102
projects, multiple development methodologies, 90

integration test, 384

integration testing, applied path analysis and, 294

integrator, 384

integrity, 384

Internet, 7-8. See also Web
fixes, distribution, 7

interoperation, 17

interview process, 164-165
acting on what is learned, 174-178
conducting interviews, 171-173
goals statements, 168
high-level, outline, 168-169
high-level interviews, 370-371
instructions for interviewers, 172-173
lightweight project, results, 178
mid-level, 371-372

outline, 169-170
preparation, 166-171
real world examples

example questions, 170-171
information gathered, 175-178

results analysis, 173-174
sample memo describing, 369-370
SME questionnaire, 168
time frame, 168
two sets of, reasons for, 166-168

interviews, logic flow map building, 302-304

invent, defined, 49, 384

inventory. See also test inventory
analytical methods, 142-143

data analysis, 144
environment catalog, 145
inspections, 143
path analysis, 144
reviews, 143-144
usage statistics, 145-147
user profiles, 145-147
walk-throughs, 144

applied risk analysis, 235
bug fixes, 250-252
contract to test, 252
MITs totals worksheet, 239-242
sizing worksheet, 242-249
test effort negotiation, 249-250
test estimation process, 236-239

automation, 183-186
billing system, structured RAD project, 153-154
building

detail layer, 164-178
on the fly, 212-213
interview process and, 164-173
preliminary inventory from Web project, 158-160
process layer, 164-178
startup requirements, 151-160
structured RAD project sample, 152-158
test environments, 160-164

defined, 384
description, 132
documents, 189-190

electronic copies, 198
high-function Web sites, 200-203
Outline View, 190-193
rekeying data, 200
spreadsheets, 198-200
tables, 196-198
TOC (table of contents), 193-195

grocery shopping analogy, 139-140
as management tool, risk analysis and, 211-213
nonanalytical methods

brainstorming sessions, 147-148
expert testers, 148

PowerPoint, 188-189
protecting the tester, 140
reasons for using, 139-141
test sources, 141-148
tests based on requirements, 142
Web sites, structured RAD project, 155-158

ISO 9001, EN standards, 52

Index

K
keytrap tool

defined, 384
path analysis and, 261

knowledge in commercial software testing, 360-361

Index

L
lack of trained testers, 15-17

large system testing, 162-163

LD (Lean Development), 13

Lean Development (LD), 13

lightweight project, interview results, 178

linear independence
defined, 384
path analysis and, 263-264

case statements, 265-267

lines of code, 384

load testing, 384

LOC (lines of code) metric, 133

logging time, sizing worksheet, 248

logic flow map
building, test estimates and, 302-308
defined, 384
path analysis and, 274-276

logic schematics, 384

Index

M
magnitude of a physical quantity, 384

management
defined, 384
planning and, 129

mapping, applied path analysis and, 290-293

market, pressures, reasons not to test, 14-15

market/entrepreneurial pressures not to test, 14-15

matrix data reduction, BVA, 321
data set tests, 322-323
data set truth tables, 323-326

maturity, methods and, 85

Maze of the Minotaur legend, 257-272

measurement, 105-106
bugs

classification, 113
composition, 116-117
density per unit, 115-116
find rates, 114
fix rate, 117-118
number found, 113-115
severity, 112

cost, 122
performance, 122-125
product failures, number, 113-114
test effort, metrics for, 119-122
tracking, metrics for, 122
worksheets and, 131-132

measures
craftspersons and, 107
defined, 384, 385
derived units, 108
metrics and, 106-108
what to measure, 108-125

Memo to Describe the Interview Process, 168

menu, 385

methods
creativity, balancing, 50
I-Feel-Lucky approach and, 46
implementation, 81-82
maturity and, 85
quality assurance and, 42-43
stating, engineering and, 52

metric system, 385

metrics
acceptance, 108
defined, 385
factor of safety, 55
fundamentals, 107-108
I-Feel-Lucky approach and, 46
LOC (lines of code), 133

measures and, 106-108
quality assurance and, 42-43
test effort measurement, 119-122
tracking, 122

MFF (money for flexibility), 84

MFI (money for information), 84

mid-level interviews, 371-372
outline, 169-170

MIDs (Most Important Data), 238

MIEs (Most Important Environments), 238

MINs (Most Important Nonanalytical Tests), 238

MIPs (Most Important Paths), 238

MITs (Most Important Tests), 385
assumptions and, 79
development methodology
compliments, 84-90
identifying tests, 80
methods, future of testing and, 340-341
MITs Totals Worksheet

performance, risk based, 241-242
Rank Average Method, 239-240
Summation Method, 241
test coverage, risk based, 241-242

overview, 78-83
performance, 79
plan-driven test effort, 86-87
questions answered, 79-81
Rank Index

assigning rank, 220-221
forensics and, 225
ranking criteria, 221-225
weighting, 219-220

risk analysis
qualitative, 217-219
quantitative, 217-219

S-curves, 79
schedule and, 80
Sizing Worksheet, 242-249
steps, 83-90
structured RAD/Agile test effort, 87-88
success factors, 81-83
test effort and, 79-80
test inventory and, 79
tracking, 79

MITs Test and Coverage, sizing worksheet, 243-244

mobile computing, testing future and, 339-340

money for flexibility. See MFF

money for information. See MFI

Most Important Tests. See MITs (Most Important Tests)

multiple environment testing, 163-164

myths
art, 48
overview, 47-48
software, 49-50

Index

N
negotiating test effort, 249-250

new function, Web project inventory, 160

new releases, 1990s, 6

nodes, 385

nonanalytical methods, test inventory and
brainstorming sessions, 147-148
expert testers, 148

Index

O
OBI (Open Buying on the Internet), 19

object-oriented languages, 385

one-hand-on-the-wall method, path analysis, 261

Open Buying on the Internet (OBI), 19

operations area, test groups and, 71-72

orchestration, documentation and, 39

organizational strategies for locating test group, 68-72

Outline View, test inventory documents, 190-193

Index

P
paper documentation

bugs and, 34
defined, 385
impediment to software quality, 33-34
quality assurance and, 23-24, 33

path analysis. See also applied path analysis
analytical methods, test inventory and, 144
case statements, 264-265

branch coverage, 267-268
linear independence, 265-267
statement coverage, 267

defined, 385
key trap tool, 261
linear independence, 263-264
logic flow map and, 274-276
Maze of the Minotaur legend, 257-272
number of paths in system, 272-273

equations for calculation, 277-280
logic flow map, 274-276
TIPs, 273

one-hand-on-the-wall method, 261
required decisions, 268-272
string trail and, 262
TIPs, 273

path dependencies, 310-311

path-dependent functions, 385

paths
application function paths, 296
data-dependent, data analysis and, 314-315
defined, 385
exercising, risk criteria and, 254
recording, test estimation process, 308-309

PDRs (Project Development Requirement), billing system inventory, structured RAD, 153

peer reviews. See reviews

percent function coverage, 385

performance, 51-55
defined, 385
metrics for measuring, 122-125
MITs method and, 79

performance testing, 385

persuasion, argument and, 59-60

physical quantity, 385

plan-driven
defined, 377
test efforts, MITs for, 86-87

planning
bug reports and, 129
diagnostics and, 129
management and, 129
MITs method and, 78-79

re-creating problems, 130-131
sizing worksheet, 247
status tracking and, 129
test coverage and, 129
test effort, 130-132
worksheets and, 131-132

PowerPoint, test inventories and, 187, 188-189

predictions, science and, 49

preliminary inventory from Web project, 158-160

process, defined, 385

processes, defined, 386

product failures
bugs and, 110
number of, 113-114

product maturity, quality and, 31-32

production system monitoring, 386

products, testability, 131

professional engineers, 51

profit, quality and, 35

programmatic paths, 386

project inventory, sample, 372

project management, risk analysis and, 213-217

projects, integration, multiple development methodologies, 90

proprietary, 386

publishing assumptions, risk analysis and, 209

pure art, 50

Index

Q
qualitative analysis, risk analysis and, 217-219

quality
boring products and, 30-31
components for, 35-36
constant refinement and, 35
customer satisfaction and, 35
defined, 386
definitions not applicable, 26-28
formula for achieving, 35
product maturity, 31-32
profit and, 35
reliability and, 29
requirements, correctness of, 30
schedule and, 28-29
users' needs and, 29-30

quality assurance
bureaucracy example, 23-24
defined, 386
documentation, technique improvement, 38-42
faulty assumptions, 28-32
ISO 9001/EN standards, 52
paper documentation and, 33
tester training, 42-43
traditional, problems with, 25-26
Wal-Mart and, 27

quality control
British Standards defined, 32
defined, 386
record keeping and, 37-38
tools for the job, selecting, 36-43
traditional tools, 32-34

quality processes
hits, 35
improvements, 34-43

quantitative analysis, risk analysis and, 217-219

questionnaire for testing, 355-367
sample, 373

Index

R
RAD (rapid application development). See also structured RAD

defined, 386
descendants, 13
testing history and, 5-7

random, defined, 386

rank, defined, 386

Rank Average Method (MITs Totals Worksheet), 239-240

Rank Index
assigning rank, 220-221
forensics and, 225
ranking criteria

identifying, 221-222
relative index, 223-225
risk index assignment, 222-223

weighting, 219-220

ranking worksheet, 234

rapid application development. See RAD (rapid application development)

RDBMS (relational database management system), 95

real world examples. See examples

record keeping
automating, 37-38
quality control and, 37-38

records, quality assurance and, 33

re-creating problems, planning and, 130-131

reduction in testing, standards and, 17-20

references for further reading, 375-378

regions, 386

regression test, 386

rekeying data, inventory documents and, 200

releases, comparison, 137

reliability, quality and, 29

reports, bug reports, planning and, 128

reproducibility
ad hoc tests, 260
random tests, 261

required decisions, path analysis, 268-272

requirements
quality and, 30
tests based on, inventory building and, 142

resources for further reading, 375-378

results analysis, 335-338
future of testing

challenges, 341-343
collaboration, 338-339
MITs methods, 340-341
mobile computing, 338-339

interview process, 173-174

lightweight project, 178
seminar evaluation, 361
surveys, 367
testing questionnaire

voice surveys, 365-366
written surveys, 361-365

reuse promotion, risk analysis and, 209-210

reviews
analytical methods, inventory building, 143-144
defined, 386

risk analysis, 205-206
applied (See applied risk analysis)
benefits

assumption publishing and, 209
inventory as management tool, 211-213
reuse promotion, 209-210
test effort focus, 207-209

case study, 401(k) Web project, 226-230
MITs

qualitative, 217-219
quantitative, 217-219

overview, 206-208
project management strategies, 213-217
Rank Index

assigning weight, 220-221
forensics and, 225
ranking criteria, 221-225
weighting, 219-220

ranking worksheet, 234
standards and, 206

risk criteria, test selection and, 252-255

Index

S
S-curves, MITs method and, 79

safety, 55
sizing worksheet, 248

safety-critical software, 55

samples. See also examples
interview process real world example questions, 170-171
inventory, structured RAD project, 152-158
memo, interview process description, 369-370
Memo to Describe the Interview Process, 168
project inventory, 372
testing questionnaire, 373

schedule
MITs and, 80
quality and, 28-29

scheduling system, examples, 92-93

science
defined, 386-387
facts and, 49
invention, 49
myths about, 49
predictions and, 49
theories and, 49
working hypothesis, 49

scientific methods, 387

scope of testing
assumptions, 54
inventory building and, 132-139

second opinions, factors of safety and, 57

seminar evaluation results, 361

severity
bugs, measuring, 112
defined, 387

SharePoint Team Services, collaboration and, 191

Sherman, Roger (Microsoft), schedule and quality, 28

size
fundamental metrics and, 109-112
inventory and, 138
test effort, 138
test set, 138

sizing worksheet, 242-243
administration time, 248
assumptions, 248
automation, 247-248
code turnovers, 246
constraints, 248
documentation, 248
estimate the number of errors that will be found, 246
logging time, 248
MITs Test and Coverage, 243-244
planning, 247

safety factor, 248
status, 248
test cycles, 246
test environments, 247
test units and time to create tests, 245
time to run tests and create
automated tests, 245
total tests, 247

SME questionnaire, 168

software
art and, 48
myths about, 49-50
safety-critical, 55
software applications, 387

Software Capability Maturity Model. See SW-CMM (Software Capability Maturity Model)

software engineering, testing as part of curriculum, 16

software testing questionnaire, 355-367
sample, 373

source code, 387

sources of tests on inventory, 141-148

spaghetti code, 387

specifications, testing and, 12-14

spreadsheets, test inventory documents, 198-200

standards
improvements in software and systems, 19-20
risk analysis and, 206
testing and, 13

reduction in, 17-20

state of knowledge in commercial software testing, 360-361

statement coverage
defined, 387
path analysis and, 267

statement tests, 387

statements, 387

static code analyzer, 387

stating assumptions, engineering, 52-54

stating methods, 52

status tracking
failures, planning and, 128
sizing worksheet, 248

Stradivari, Antonio (as craftsman), 132

strategies
current testing strategies, 66-72
organizational, test group and, 68-72

string trail, path analysis and, 262

structural information, Web project inventory, 160

structural tests, 387

structured analysis, current testing and, 3

structured RAD, 84-85
billing system inventory, 153-154
sample inventory, 152-153
Web site, 155-158

structured RAD/Agile test effort, MITs for, 87-88

structured systems, 387

Summation Method (MITs Totals Worksheet), 239-240

SW-CIMM (Software Capability Maturity Model), 387

system behavior, assumptions, 54

system requirements
assumptions, 54
validation, risk criteria and, 253
verification, test selection and, 253

system specifications, assumptions, 54

system tester, time needed, 135

system tests, 388

systems, 263, 388

systems test, inventory building and, 134

Index

T
tables, test inventory documents, 196-198

team approach versus adversarial approach, 57-60

technique
art and, 48
defined, 388

test case
defined, 388
description, 134

test coverage
defined, 388
planning and, 129
test effort comparison, 130

test cycles, sizing worksheet, 246

test effectiveness, 120-121
failures and, 121

test effort
Agile, turnaround, 88
coverage, 119
defined, 388
estimating, historical data and, 135-139
focus, risk analysis and, 207-209
goals and, 128-129
heavyweight effort example, 90-102
lightweight effort example, 90-102
measurement metrics, 119-122
middleweight effort example, 90-102
MITs and, 79-80
negotiation, 249-250
plan-drive, MITs for, 86-87
planning for adequate, 130-132
size, 138
test coverage comparison, 130
time available, fundamental metrics and, 111

test environments
environment description matrix, 165
identifying, inventory building and, 160-164
large system testing, 162-163
listing, inventory building and, 160-164
multiple environment testing, 163-164
sizing worksheet, 247

test estimation process, 236-239
estimate building, 296-297

logic flow maps, 302-308
menu map, 297
menu options, 297-302
path recording, 308-309

test groups
development area and, 68-70
independent, 68
none, 70-71
operations area, 71-72

test inspections, 388

test inventory, 127
building

behavioral testing, 135
black box testing, 135
end-to-end testing, 134
scope determination, 132-139
systems test, 134
test units, 133-134

defined, 388
description, 133
evolution, 186-203
MITs and, 79
overview, 187-188
PowerPoint and, 187, 188-189
size and, 138

test plans versus contracts to test, 141

test scripts, 127
defined, 388
description, 134

test selection, risk criteria, 252-253
exercising paths and data, 254
exercising system functions, 253
system requirements, 253

test sets
defined, 388
size, 138

test suites, 134, 388

test tracking tools, automation and, 185

test units, inventory building and, 133-134

test units and time to create tests, sizing worksheet, 245

testers
expendability, 167
today's challenges, 12-20
training

lack of, 15-17
quality assurance and, 42-43

Tester's Paradise Portable System Monitor menu, 300

testing
credibility of, 17
defined, 388
eclectic approach to integration and, 60-66
history of, 4-12
as project itself, 194
specifications and, 12-14
standards and, 13

reduction in testing, 17-20
strategies, current, 66-72

testing questionnaire, 355-367
sample, 373

tests
current situation, 1-21
defined, 388

IEEE, 133
fundamental metrics and, 110, 111-112
identifying, MITs and, 80

time required, fundamental metrics and, 110-111

tests based on requirements, inventory and, 142

The Art of Software Testing, 58

theoretical, defined, 389

theories, science and, 49

3G (Third Generation) cell phones, 31

time, fundamental metrics and, 110-111

time to run tests and create automated tests, sizing worksheet, 245

TIP (total independent paths), 273, 389

TOC (table of contents), test inventory documents, 193-195

tools for the job, 27
quality control, selecting, 36-43
quality control tradition tools, 32-34

top-down testing
versus bottom-up, 65-66
broad focused integration testing, 67-68
defined, 389

total independent paths. See TIP (total independent paths)

total tests, sizing worksheets, 247

tracking
metrics, 122
MITs method, 79

training testers
lack of, 15-17
quality assurance and, 42-43

turnaround, Agile, test efforts, 88

type of testing, assumptions, 54

Index

U
UAT (user acceptance test), 389

UDDI (universal description discovery and integration), 19, 389

UL (Underwriters Laboratory), 7, 389

uniformity, defined, 389

unit tests, 65-66, 389

units, 389

universal description discovery and integration. See UDDI

universities, software testing classes, 16

unreproducible bugs, 389

usage statistics, analytical methods, test inventory and, 145-147

user acceptance test. See UAT (user acceptance test)

user profiles, analytical methods, test inventory and, 145-147

users, needs, quality and, 29-30

Index

V
validation, 389

persuasion and, 59-60
system requirements, risk criteria and, 253
Webster's definition, 13

validity, defined, 390

vendors, 1980s companies, 4-5

verification
defined, 390
IEEE testing defined and, 13
system requirements, test selection and, 253
Webster's definition, 13

verify, defined, 390

versioning, 390

voice surveys, testing questionnaire, 360-361
results, 365-366

Index

W
Wal-Mart, quality assurance and, 27

walk-throughs, analytical methods, 144

Web, 7-8. See also Internet

Web-based collaborative interviews, 166

Web projects, preliminary inventory, 158-160

Web services, data analysis and, 330-332

Web sites
collaboration, quality control and, 37-38
inventory, structured RAD project, 155-158
test inventory documents, 200-203

white box testing, 390

working hypothesis
defined, 390
science and, 49

worksheets, measurements and, 131-132

written surveys, testing questionnaire, 360
results, 361-365

WYSIWYG (what you see is what you get), 390

Index

X
XML/EDI standards, 19

XP (eXtreme Programming), 13

List of Figures

Chapter 2: Maintaining Quality Assurance in Today's Software
Testing Environment

Figure 2.1: Business-to-business automated procurement system between two companies.

Figure 2.2: The movement of documents through the system.

Chapter 4: The Most Important Tests (MITs) Method

Figure 4.1: The spending priorities of different development methods.

Chapter 5: Fundamental Metrics for Software Testing

Figure 5.1: Bug density per unit.

Figure 5.2: Bug distribution by severity.

Figure 5.3: Bug fix rate from 1998 study.

Chapter 7: How to Build a Test Inventory

Figure 7.1: The inventory converted into a dynamic list on the project's Web site. (Powered by
Microsoft SharePoint Team Services.)

Figure 7.2: Environment details provided during the second-level interviews.

Figure 7.3: A string Gantt on the wall.

Chapter 8: Tools to Automate the Test Inventory

Figure 8.1: Inventory in PowerPoint Outline view.

Figure 8.2: TestersParadise.com Home Page, an example of a high-function test Web site.

Figure 8.3: Inventory from a Web project as an outline in Microsoft Word.

Figure 8.4: The table of contents showing the inventory.

Figure 8.5: The environment catalog sheet from the inventory spreadsheet.

Figure 8.6: The SharePoint Team Services Lists page.

Figure 8.7: PDR view of the inventory in a Team Services list.

Figure 8.8: Environment Catalog view of the inventory in a Team Services list.

Chapter 9: Risk Analysis

Figure 9.1: The spreadsheet inventory showing the "Day in the Life of a Car" test scripts, sorted by
test order and priority.

Figure 9.2: The shipping company's inventory showing the test order of the most important tests for
the HRIS system.

Figure 9.3: Sample ranking index for Tester's Paradise.

Chapter 11: Path Analysis

Figure 11.1: Maze with an exit.

Figure 11.2: Maze with island exit. The entrance to this maze cannot be used as an exit.

Figure 11.3: Case statement structure.

Figure 11.4: Five linearly independent paths.

Figure 11.5: A series of required decisions.

Figure 11.6: Paths 1 and 2.

Figure 11.7: Paths 3 through 6.

Figure 11.8: Paths 7 through 12.

Figure 11.9: Paths 13 through 16.

Figure 11.10: Looping structure.

Figure 11.11: Logic flow diagram for Exercise 1.

Figure 11.12: Logic flow diagram for Exercise 2.

Figure 11.13: Logic flow diagram for Exercise 3.

Figure 11.14: Logic flow diagram for Exercise 4.

Chapter 12: Applied Path Analysis

Figure 12.1: The director's foil.

Figure 12.2: Automatic hyperlink analysis is a part of most Web content creation tools.

Figure 12.3: Automatic Web site Reports view in FrontPage 2002.

Figure 12.4: Web site usage Reports view in FrontPage 2002.

Figure 12.5: A three-dimensional representation of the internal paths in the director's three-bullet
foil.

Figure 12.6: The main menu from the second release of the Tester's Paradise application.

Figure 12.7: The Tester's Paradise main menu modeled as a logic flow diagram.

Figure 12.8: The Tester's Paradise Portable System Monitor menu.

Figure 12.9: Logic flow map for the View Portable System Monitor menu option.

Figure 12.10: Logic flow maps for the entire PSM menu.

Figure 12.11: The expanded PSM logic flow map.

Chapter 13: Data Analysis Techniques

Figure 13.1: The Payment Details page.

Figure 13.2: The boundary value range for a valid month.

Figure 13.3: The data set for a valid date field expanded.

Appendix A: Answers to Exercises

Figure A.1

Figure A.2

Figure A.3

Figure A.4

Figure A.5

Figure A.6

Figure A.7

Figure A.8

Appendix B: Software Testing Questionnaire, Survey and Results

Figure B.1: Composition of respondents by department.

Figure B.2: Composition of respondents, management or nonmanagement.

Figure B.3: Composition of platforms tested by respondents.

Figure B.4: Type of testing performed by respondents.

Figure B.5: Test metrics used by respondents.

List of Tables

Chapter 5: Fundamental Metrics for Software Testing

Table 5.1: Severity Metrics and Ranking Criteria

Table 5.2: Bug Find Rates and Costs, Week 1

Table 5.3: Bug Find Rates and Costs, Week 4

Table 5.4: Relative Seriousness (Composition) of Bugs Found

Table 5.5: Determining If the Test Effort Was Adequate

Chapter 6: The Test Inventory

Table 6.1: Comparison of Two Releases of the Same Application

Chapter 7: How to Build a Test Inventory

Table 7.1: Preliminary Test Inventory from the Billing System Example, Sorted by PDR

Table 7.2: Preliminary Billing Inventory with the Interview Input, Dependencies, Environmental
Description, and Test Requirements

Table 7.3: Preliminary Inventory from a Web Project

Table 7.4: Environment Description Matrix

Chapter 8: Tools to Automate the Test Inventory

Table 8.1: Preliminary Inventory from a Web Project

Chapter 9: Risk Analysis

Table 9.1: MITs Rank Index Description and Criteria

Table 9.2: MITs Risk Criteria Samples

Chapter 10: Applied Risk Analysis

Table 10.1: Sample Preliminary Inventory with Ranking

Table 10.2: Data from the MITs Totals Worksheet

Table 10.3: Tester's Paradise Test Sizing Worksheet

Chapter 12: Applied Path Analysis

Table 12.1: Tester's Paradise Test Inventory

Table 12.2: Record from Portable System Monitor

Table 12.3: Sample Test Inventory 3

Chapter 13: Data Analysis Techniques

Table 13.1: The Credit Authorization Truth Table

Table 13.2: Data Set Validation Table

Table 13.3: Sample Test Inventory 3

Chapter 14: What Our Analysis Tells Us and What's in Store in the
Near Future

Table 14.1: The Total Tests Identified for the Effort through MITs Analysis

Table 14.2: The Testers Paradise Release 2.0 Sizing Worksheet with MITs

List of Sidebars

Chapter 1: The State of Software Testing Today

Some of the Standards That Have Improved Software and Systems

Chapter 3: Approaches to Managing Software Testing

Assumption #1. The developers have unit-tested the code.

Chapter 4: The Most Important Tests (MITs) Method

Fact: Maturity Is Independent of Method

Agile Development Values

My Perspective on DSDM

eXtreme Programming (XP): A Thumbnail Sketch

Chapter 7: How to Build a Test Inventory

The Expendable Tester Ploy

About "Big Bang" Efforts

Chapter 8: Tools to Automate the Test Inventory

The Office Tools: Collaboration and High-Function Web Sites

Testing Is Not a Project-Or Is It?

Fundamental Principle: Never Rekey Data

Chapter 9: Risk Analysis

Reproducibility and Savings Estimates

Chapter 10: Applied Risk Analysis

Which Comes First? The Analysis or the Plan?

Some Thoughts about Test Coverage

Chapter 11: Path Analysis

In the case statement, the number of paths required for 100 percent coverage:

If-then-else-structure paths for 100 percent coverage:

Chapter 12: Applied Path Analysis

It turns out that it is not a trivial case

Tip for Microsoft Word

Chapter 13: Data Analysis Techniques

A Survivalist View of Boundary Analysis

Drop-Down Selection Boxes Only Keep Out Honest People

